DFG Collaborative Research Center 165

WAVES TO WEATHER

The Atmospheric Mesoscale

George. C. Craig Tobias Selz, Lotte Bierdel

Ludwig-Maximilians University, Munich

The mesoscale gap

Synoptic 1000 km 100 hr

Synoptic Mesoscale

100 km 10 hr

Convective 10 km 1 hr

The mesoscale gap

Synoptic	Mesoscale	Convective
1000 km	100 km	10 km
100 hr	10 hr	1 hr

days

Mesoscale weather phenomena

WAVES TO WEATHER

(Markowski, "Mesoscale Meteorology in Midlatitudes" 2010)

WAVES TO WEATHER

Kinetic energy spectrum observed from commercial aircraft (Global Atmospheric Sampling Program; Nastrom et al 1984)

"Universal" shape **k**³ **power law** – QG enstrophy cascade **k**^{5/3} power law – upscale cascade, or downscale cascade, or orography, or gravity wave saturation, or ...?

Large model-based data set

Kinetic energy spectrum at 10 km

COSMO-DE operational analysis

- Nudging to radar and conventional data
- Horizontal resolution: 2.8 km
- Domain: 1200x1300 km, centred over Germany
- 3 years (2014-2016), at 3 hourly intervals

(Selz, Bierdel and Craig JAS 2018, submitted)

WAVES TO WEATHER

Correlations with kinetic energy

Correlation of kinetic energy with precipitation

Mesoscale weather phenomena

WAVES TO WEATHER

horizontal length scale

(Markowski, "Mesoscale Meteorology in Midlatitudes" 2010)

Mesoscale weather phenomena

WAVES TO WEATHER

horizontal length scale

(Markowski, "Mesoscale Meteorology in Midlatitudes" 2010)

Constant speed v ~ 10 ms⁻¹

Weather phenomena concentrated along "advective band"

Space-time energy spectrum

a) Kinetic energy at 10 km

(Craig and Selz GRL 2018)

Horizontal and vertical spectra

Effective resolution of model

WAVES TO WEATHER

a) Kinetic energy at 10 km b) Vertical kinetic energy at 5 km inf inf 10² 10^{2} period [h] period [h] 10¹ **10**¹ 10⁰ 10⁰ 10^{-1} 10^{-1} 10² 10³ 104 10¹ 10² 10¹ 10³ inf wavelength [km] wavelength [km] 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10⁰ 10¹ 10^{-9} 10^{-6} 10^{-5} 10^{-8} 10-7 10^{-6} 10² spectral density [m² s⁻²] spectral density [m² s⁻²]

Horizontal and vertical spectra

Orographic gravity waves

Convective updraughts

Single-scale asymptotic regimes

WAVES TO WEATHER

Weak Temperature Gradient (WTG) approx.

- and mesoscale
- gravity waves

Expected for advective band on convective

$w\partial_z \theta = Q$

Advective motions assumed slower than

$U \ll NH$

Often used for tropics

Validity of WTG approximation

d) Froude-number (Fr²)

Validity of WTG measured by:

$$Fr^2 \sim \left(\frac{U}{NH}\right)^2 \sim \frac{\partial}{\partial r}$$

$\frac{\partial_t \theta + \boldsymbol{v}_h \cdot \nabla_h \theta}{w \partial_z \theta}$

Validity of WTG approximation

d) Froude-number (Fr²)

Multiscale asymptotics

Equations for the convective scale

 $w^c \partial_z \bar{\theta} = Q^c$ Vertical velocity from heating (WTG approx.): Horizontal divergence from continuity:

Dynamics from vertical component of vorticity equation:

 $\partial_{t_c} \zeta^c + \nabla_c \cdot (\boldsymbol{v}_h^c \zeta^c) + \nabla_c \cdot (\boldsymbol{v}_h^m \zeta^c) = \nabla_c \cdot (\boldsymbol{w}_h^c \boldsymbol{\zeta}_h^c)$ 2D ζ -conservation advection by v_h^m forcing from w^c

Application: Balance principle for convective-scale data assimilation

- Divergent wind given to leading order by heating ullet
- Can damp "bad divergence" (transient gravity waves) without supressing convection

$\nabla_c \cdot \boldsymbol{v}_h^c = \frac{1}{\overline{\rho}} \partial_z (\overline{\rho} w^c)$

Multiscale asymptotics II

Equations for the mesoscale

 $\nabla_m \cdot \boldsymbol{v}_h^c = 0$ Non-divergent at leading order: $\widetilde{w}^m \partial_z \bar{\theta} = Q^m$ WTG at second order:

Dynamics from vertical component of vorticity equation:

 $\partial_{t_m} \zeta^m + \nabla_m \cdot (\boldsymbol{v}_h^m \zeta^m) + \nabla_m \cdot (\boldsymbol{v}_h^s \zeta^m) + \nabla_m \cdot (\boldsymbol{v}_h^c \zeta^c - w^c \boldsymbol{\zeta}_h^c) = 0$ 2D ζ -conservation advection by v_h^s convective source Preliminary result combining separate two-scale analyses

Application: Forcing of mesoscale by scale interactions

- 2D vorticity conservation couple in vertical by forcing from synoptic and mesoscales
- "Stratified turbulence" with depth scale imposed by forcing terms

Multiscale asymptotics III

Equations for the synoptic scale

 $\nabla_{s} \cdot \boldsymbol{v}_{h}^{s} = 0$ Geostrophic wind is non-divergent: Dynamics from QG potential vorticity equation:

$$\partial_{t_s} q^c + \nabla_s \cdot (\boldsymbol{v}_h^s q^s) + \nabla_s \cdot \left(\overline{\boldsymbol{v}_h^m \zeta^m} - \overline{\widetilde{\boldsymbol{w}}^m \zeta_h^m} \right) = \frac{f_0}{\overline{\rho}} \partial_z \left(\frac{1}{\overline{\rho}} \partial_z \left(\frac{1}{\overline{\rho}}$$

Application: Mechanism for upscale impact of diabatic heating

- PV source due to forced mesoscale divergent wind indirect \bullet effect of diabatic processes on smaller scales
- Projection of diabatic heating on synoptic scale is only direct effect ${\bullet}$ of heating

$\frac{\overline{\rho}}{\partial_z \overline{\theta}} Q^s$ ic heating

Summary and implications

- 1. Mesoscale gap in variability of kinetic energy spectrum
- 2. Kinetic energy is concentrated along an advective band
- **3. Leading order balance:**
 - Convective scale: Weak temperature gradient
 - Mesoscale: Forced stratified turbulence
 - Synoptic scale: Quasi-geostrophic

4. Implications

- Balance principle for convective-scale data assimilation
- Mesoscale motions forced by scale interactions
- Mechanisms for upscale impact of diabatic heating on synoptic scale

