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“Universal” shape

k-3 power law — QG enstrophy
cascade

k-3 power law — upscale
cascade, or downscale cascade,
or orography, or gravity wave
saturation, or ...?
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Large model-based data set

COSMO-DE operational

analysis

* Nudging to radar and
conventional data

* Horizontal resolution:
2.8 km

 Domain: 1200x1300 km,
centred over Germany

« 3years (2014-2016), at
3 hourly intervals

(Selz, Bierdel and Craig JAS 2018, submitted)
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a) Kinetic energy at 10km
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(Craig and Selz GRL 2018)

‘\"b"/’ Space-time energy spectrum

COSMO-DE simulation

* Horizontal resolution: 2.8 km

 Domain: 7000x4000 km,
over Europe and N. Atlantic

e 7 days (from 28 May 2016)
output at 2 min. intervals

v ~10 mst
“advective band”

Inertia-gravity wave
dispersion relation for
gravest tropospheric mode
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Effective resolution of model

b) Vertical kinetic energy at 5 km

a) Kinetic energy at 10 km
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Orographic gravity waves

ical kinetic energy at 5 km

a) Kinetic energy at 10 km

inf [T

period [h]
period [h]

104

103
wavelength [km]

103

102 10°% 2077 3107 10° 10
spectral density [m?2s2]

Convective updraughts

10! 1072 103 104 inf
wavelength [km]

I i
101 102

1 |
107 10—= 10~% 102 1072 10~ 310°
spectral density [m2s2]




‘\"»"/ Approximations for different regimes

WAVES TO WEATHER

Time scale (h, /u,.)

1/€3

1/€

1/¢

Single-scale asymptotic regimes

Weak Temperature

Gradient (WTG) approx.

e - « EXxpected for advective
band on convective
— and mesoscale
< 10!
Inertial waes | _ _ wo,0 = Q
@
0o * Advective motions
assumed slower than
- gravity waves
107! AN o
- = — 05 103 10/ UKNH
L ) f@“ wavelength [km]Obukhov scale e Often used for trOpiCS
/ @‘“‘e’é A p\coﬁ 1/e"2
€ 1 1/€2 1/63
Bulk micro Convective Synoptic Planetary
Length scale (h,,)

(Klein Ann. Rev. Fluid Mech. 2010)



‘\"b"/’ Validity of WTG approximation

WAVES TO WEATHER

period [h]

d) Froude-number (Fr?)

inf ‘

10t 102
wavelength [km]

103

E =
e ———
e
e
B —

10—05

1
107

104 inf
1005

Validity of WTG measured by:

Fr2~(

U
NH

)

2 OtH —+ Uy - th

wa,0



‘\"b"/ - Validity of WTG approximation

WAVES TO WEATHER

period [h]

d) Froude-number (Fr?)

inf -

Validity of WTG measured by:

102 T -y ( U )2 2.0 + v, - V,0
s —— | " \WH wa,0

10! —

100 I:rZ ~ 05

10~1

101 102 103 10 inf
wavelength [km]

1
109> 100 1005




‘\"F"/’ Multiscale asymptotics |

WAVES TO WEATHER

Equations for the convective scale
Vertical velocity from heating (WTG approx.):  w€d,0 = Q¢
Horizontal divergence from continuity: V. vy, = %az(ﬁwc)
Dynamics from vertical component of vorticity equation:

0;,CC+ V- (Wpg®)  +V-(wp'() = V.- (W)

2D (-conservation advection by vt forcing from w*¢

Application: Balance principle for convective-scale data assimilation
* Divergent wind given to leading order by heating

« Can damp "bad divergence” (transient gravity waves) without
supressing convection
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Equations for the mesoscale
Non-divergent at leading order: Vip V5, =0

Dynamics from vertical component of vorticity equation:
Oty S™ + Vi - (WRH™) 4 V- (Wi 0™) 4 Uy (05,06 = wEE)) =0

2D {-conservation  advection by v,  convective source

Application: Forcing of mesoscale by scale interactions

» 2D vorticity conservation couple in vertical by forcing from
synoptic and mesoscales

« “Stratified turbulence” with depth scale imposed by forcing terms
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Equations for the synoptic scale
Geostrophic wind is non-divergent: V. -vy, =0
Dynamics from QG potential vorticity equation:
— f 7
0, + Vs - (WRg) + 7, - (viid™m —wmg) = 20, (50%)

g-conservation mesoscale source synoptic heating

Application: Mechanism for upscale impact of diabatic heating

* PV source due to forced mesoscale divergent wind — indirect
effect of diabatic processes on smaller scales

* Projection of diabatic heating on synoptic scale Is only direct effect
of heating
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1. Mesoscale gap in variability of kinetic energy spectrum
2. Kinetic energy Is concentrated along an advective band

3. Leading order balance:
* Convective scale: Weak temperature gradient
» Mesoscale: Forced stratified turbulence
» Synoptic scale: Quasi-geostrophic

4. Implications
* Balance principle for convective-scale data assimilation
 Mesoscale motions forced by scale interactions
* Mechanisms for upscale impact of diabatic heating on
synoptic scale



