Aerosol-cloud interactions in mixed-phase clouds and their role for climate

Ulrike Lohmann, A. Beck, R. Dietlicher, O. Henneberg, J. Henneberger, L. Lacher, A. Lauber, D. Neubauer, F. Ramelli

What is a mixed-phase cloud?

Why mixed-phase clouds?

McCoy et al., JAMES, 2016

Southern Ocean bias and mixed-phase couds

The ice fraction f is giver in CAM as:

- f = 0; for $T > T_{ice}$, $T_{ice} = 268$ K in the control experiment
- $T_{ice} = 253$ K in the sensitivity experiment
- f increases linearly up of f = 1 for $T \le 238.15$ K

Kay et al., 2016

Working principle of our holographic device

IOLIMO

6

Convolutional Neuronal Network

Observation of mixed-phase clouds⁷

Lohmann et al. 2016, GRL

Lohmann et al., GRL, 2016

Origin of the ice crystals?

100

concentration (l^{-1})

Origin of the ice crystals?

2.5

0

Expectations from surface-based processes:

• Mainly irregular ice crystals

OLIMO

• Decrease of ICNC with height

50

cloud-free

150

Origin of the ice crystals?

Expectations from surface-based processes:

• Mainly irregular ice crystals

OLIMC

• Decrease of ICNC with height

concentration (l^{-1})

In-cloud

HOLIMO Mentered Manager Andread Research

Mountain-top in-situ measurements are 12 influenced by surface processes

Measurement at Sonnblick observatory (SBO), Austria

Origin of the ice crystals?

Take-home messages – observations

- Our holographic measurements provide information of the distribution of cloud particles on the mm-scale
- Ice nucleation and surface-based processes alone cannot explain the observed ice crystal number concentrations at Jungfraujoch
- Cloud droplets in orographic clouds are replenished in high updraft cases

Response of clouds to CO_2 doubling

 \rightarrow The net radiative feedback due to all cloud types is *likely* positive

 \rightarrow Rising of the melting level causes more liquid instead of ice clouds \rightarrow higher optical depth \rightarrow negative cloud feedback

IPCC, 2013, Fig. 7.11

Supercooled liquid fraction (SLF) and equilibrium climate sensitivity (ECS)

→ The higher SLF (liquid/(liquid+ice)) in the current climate, the smaller the negative cloud phase feedback
→ larger ECS

Similar results in other models?

HOLIMO	Sensitivity	studies	with ECH	HAM6-HAM2
- Administrative washfurwards being as				

Sim.	Description
REF	Release version ECHAM6.3-HAM2.3
ALL_ICE	no supercooled liquid water at T < 0 °C
ALL_LIQ	only supercooled liquid water at T > -35 °C

Lohmann and Neubauer, ACP, 2018

Annual global mean cloud properties

Supercooled liquid fraction (SLF)

CESM

ECHAM6-HAM2

 \rightarrow do we also underestimate ECS? And if so, by how much?

Components of the globally averaged cloud feedback parameters

Equilibrium climate sensitivity

No ECS shift from cloud phase feedback between the reference simulation and ALL_LIQ in ECHAM6-HAM2 despite the smaller cloud phase feedback \rightarrow why not?

Changes of extratropical clouds (> 40° S/N) in a warmer climate

 \rightarrow ALL_ICE: larger shift from optically thin to optically thick low and mid-level clouds than in REF

 \rightarrow ALL_LIQ: high level clouds become optically thicker than in REF

Why is the cloud phase feedback not important in ALL_LIQ?

С

Atmosphere optical thickness due to cloud

9.4

23

60

3.5 4.0

í٥

0.0

1.3

0.3

0.5

3.6

 ΔCRE_{IW}

 ΔCRE_{TOT}

Bodas-Salcedo,	GRL,	2018
----------------	------	------

+2.4

-0.8

5

4

3

2

0

+0.6

-1.8

Changes of tropical clouds (15°S – 15°N) in a warmer climate

Changes of cloud properties in a warmer climate

IOLIMO

Changes in cloud radiative effects (CRE) in a warmer climate

CRE (radiative kernel method; only changes in clouds)

CRE (includes changes in water vapor, CO_2 , surface temperature, albedo)

Impact of a new ice microphysics scheme

With our new ice microphysics scheme (Dietlicher et al., ACPD, 2018) the cloud optical depth feedback becomes positive and climate sensitivity increases to 3.8 °C (vs. 2.5 °C in REF)

Take-home messages – modelling results

- The supercooled liquid fraction is not a good indicator for the cloud phase feedback because cloud phase matters most for clouds not shielded by higher clouds
- ALL_ICE REF ALL_LIQ 0.6 0.4 : (**Mm**.₅**K**, 0.(• 0.2 -0.4 ALL_ICE RFF ALL_LIQ -0.6 Total Optical depth CTP Amt

- If cloud phase changes for optically thick clouds then ٠ changes in the shortwave and longwave compensate each other (consistent with the findings by Bodas-Salcedo, 2018)
- ECS is significantly higher when using the new ice microphysics scheme (Dietlicher ۰ et al., ACPD, 2018) with 3.8 °C vs. 2.5 °C. The reasons for this require further analysis but could be linked to a smaller contribution of mixed-phase clouds in that scheme.

Train and test on same dataset (accuracy %)

Simple approach	Normal tree	SVM	Deep Learning
88.6 ± 3.3	95.3 ±1.4	98.1 ± 0.7	97.4 ± 0.5

Train on four datasets, test on unseen dataset (accuracy %)

	Simple approach	Normal tree	SVM	Deep Learning
2016 iHOLIMO 3G	70.4	89.6	95.5	96.2 ± 0.2
2016 iHOLIMO 3M	61.7	94.7	96.3	98.0 ± 0.2
2016 JFJ 3G	72.0	90.4	95.0	96.8 ± 0.2
2016 SON 3G	71.8	81.1	75.7	91.1 ± 1.6
2017 SON 3G	87.1	90.5	82.6	97.0 ± 1.0

Annual-zonal mean cloud properties

IOLIMC

