An overview of ERA5

Paul Berrisford, Bill Bell, Gionata Biavati, Per Dahlgren, Dick Dee, Manuel Fuentes, Hans Hersbach, Andras Horanyi, Joaquin Munoz-Sabater, Carole Peubey, Raluca Radu, Iryna Rozum, Dinand Schepers, Adrian Simmons, Cornel Soci, Sebastien Villaume

European Centre for Medium-Range Weather Forecasts
NCAS-Climate
Overview of Reanalysis products at ECMWF

ERA5, the follow up of ERA-Interim, configuration and status

ERA5 performance

Concluding remarks
Reanalysis offers a detailed overview of the past atmosphere (and other components)

- **Complete:** combining vast amounts of observations into (global) fields
- **Consistent:** use the same physical model and DA system throughout
- **State-of-the-art:** use the best available observations and model at highest feasible resolution
- **Reanalysis allows for a close monitoring of the Earth’s climate system also where direct observations are sparse.**
Reanalyses Produced at ECMWF

Atmosphere/land
1) 1979 - 1981 FGGE
2) 1994 - 1996 ERA-15
3) 2001 - 2003 ERA-40
4) 2006 - ... ERA-Interim
5) 2016 - ... ERA5

Including ocean waves

Ocean
2006 ORAS3
2010 - ... ORAS4
2016 - ... ORAS5

Including sea ice

Centennial
2013 - 2015 ERA-20CM/20C

Coupled
2016 CERA-20C
2017 CERA-SAT

Enhanced land

2012 ERA-Int/Land
2014 ERA-20C/Land

Atmospheric composition

2008 - 2009 GEMS
2010 - 2011 MACC
2017 - ... CAMS

Towards a coupled earth system
ERA-Interim had more than 20,000 unique users in 2015-2016 alone.

Users and stakeholders:

- Climate monitoring & provision of climatologies
- ECMWF member states
- Research and education, over 7,000 citations
- Public sector
- Space agencies
- Commercial applications

However, ERA-Interim is 10 years old and needs replacement.
What is new in ERA5?

<table>
<thead>
<tr>
<th></th>
<th>ERA-Interim</th>
<th>ERA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>1979 – present</td>
<td>Initially 1979 – present, later addition 1950-1978</td>
</tr>
<tr>
<td>Streams</td>
<td>1979-1989, 1989-present</td>
<td>Parallel streams, one/two per decade</td>
</tr>
<tr>
<td>Assimilation system</td>
<td>2006, 4D-Var</td>
<td>2016 ECMWF model cycle (41r2), 4D-Var</td>
</tr>
<tr>
<td>Model input (radiation and surface)</td>
<td>As in operations, (inconsistent sea surface temperature)</td>
<td>Appropriate for climate, e.g., evolution greenhouse gases, volcanic eruptions, sea surface temperature and sea ice</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>79 km globally 60 levels to 10 Pa</td>
<td>31 km globally 137 levels to 1 Pa</td>
</tr>
<tr>
<td>Uncertainty estimate</td>
<td></td>
<td>Based on a 10-member 4D-Var ensemble at 62 km</td>
</tr>
<tr>
<td>Land Component</td>
<td>79km</td>
<td>ERA5L, 9km (separate, forced by ERA5)</td>
</tr>
<tr>
<td>Output frequency</td>
<td>6-hourly Analysis fields</td>
<td>Hourly (three-hourly for the ensemble), Extended list of parameters ~ 9 Peta Byte (1950 - timely updates)</td>
</tr>
<tr>
<td>Extra Observations</td>
<td>Mostly ERA-40, GTS</td>
<td>Various reprocessed CDRs, latest instruments</td>
</tr>
<tr>
<td>Variational Bias correction</td>
<td>Satellite radiances, radiosondes predetermined</td>
<td>Also ozone, aircraft, surface pressure, newly predetermined for radiosondes.</td>
</tr>
</tbody>
</table>
Forcing and boundary conditions that reflect the 20th century evolution

Solar forcing

Greenhouse gases

Aerosols
SO4 (mg/m^2) Mean 4.833, August 1980-1989, HIST

Volcanic eruptions

SST and sea ice

AC&C SPARC ozone
Parallel production Streams:

Speed: 7-9 days/day per stream

‘NRT’: running 2-3 days behind real time

• so far, released 2-3 months later

• Soon: released 1 week behind real time

2008-2017: released

2000-2007: completed,

• to be released end of June

1990->1995->1999 streams: to be completed end Sept

1979->1985->1989 streams: to be completed end Sept

Integration ERA5 land has just started
Newly reprocessed data sets

Radiances: SSM/I brightness temp from CM-SAF
MSG from EUMETSAT

Atmospheric motion vector winds: METEOSAT, GMS/GOES-9/MTSAT, GOES-8 to 15, AVHRR METOP and NOAA

Scatterometers: ASCAT-A (EUMETSAT),
ERS 1/2 soil moisture (ESA)

Radio Occultation: COSMIC, CHAMP, GRACE, SAC-C, TERRASAR-x (UCAR)

Ozone: NIMBUS-7, EP TOMS, ERS-2 GOME, ENVISAT
SCIAMACHY, Aura MLS, OMI, MIPAS, SBUV

Wave Height: ERS-1, ERS-2, Envisat, Jason

plus data that were not used by ERA-Interim
IASI, ASCAT, ATMS, Cris, Himawari, ...

Typically the latest instruments:
ERA5 is more future proof!

and improved data usage

all-sky vs clear-sky assimilation,
latest radiative transfer function ...
Data usage in ERA5

Data sources:
In situ, conventional, satellite
Global and as resilient as possible
Pressure, wind, temperature, humidity, wind, ozone, ..
brightness temperature, bending angles, ...

Multivariate assimilation method:
e.g., most variables also provide information on wind
(like pressure and brightness temperature)

Observation counts in ERA5:
Increasing over time
Currently ingest about 650 Million observations a day
Use about 50 Million of them
Quality Control:

- Thinning and duplicate checks
- Blacklisting of known suspect data
- Sanity checks, such as too far from the model
- Bias corrections
Uncertainty in ERA5

Uncertainty estimate

Spread in Surface Pressure (hPa)

- 10 member ensemble (EDA)
- J_b in ERA5: 85% static, 15% from EDA
- Ensemble spread and mean
- Spread indicates the relative uncertainty
 - in space and time
 - only accounts for random error (except SST)

Reflects variations in:
 - ingested observing system
 - flow-dependent sensitivity

J_b is the background error covariance matrix
Horizontal resolution and depiction of tropical cyclones

Mean precipitation rate (mm/day) for September 2017

<table>
<thead>
<tr>
<th>Horizontal resolutions:</th>
<th>~80km</th>
<th>~30km</th>
<th>~10km</th>
</tr>
</thead>
</table>

5-day precipitation for Harvey

Climate Change

National Centre for Atmospheric Science

European Commission

Copernicus
Comparison with Merra-2

<table>
<thead>
<tr>
<th></th>
<th>Merra-2</th>
<th>ERA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial resolution</td>
<td>0.5 x 0.625 degrees 72 levels to 1 Pa</td>
<td>0.28125 x 0.28125 degrees 137 levels to 1 Pa</td>
</tr>
<tr>
<td>Assimilation system</td>
<td>3D-Var FGAT, 6-hour window</td>
<td>4D-Var, 12-hour window</td>
</tr>
<tr>
<td>Output frequency</td>
<td>Hourly</td>
<td>Hourly</td>
</tr>
</tbody>
</table>

![Map comparison](image.png)
Global mean surface temperature
ERA-Interim assimilates no ozone data in the polar night, and structure functions can generate spurious values at the South Pole when there are increments near the edge of the polar vortex.

ERA5 assimilates infrared and microwave data on ozone, and has different structure functions.
ER5 performance over time compared to ERA-Interim

Troposphere
Standard deviations of (observation-background) and (observation-analysis) are generally smaller for ERA5 particularly at 850hPa

Ocean Waves
Buoy-comparison improved for ERA5
Interannual variations in the dryness of the tropical lower stratosphere are realistic.

Upward movement of the annual variation in humidity in ERA5 is not as slow as observed ...

... but is slower than in ERA-Interim.
Interannual variations in the dryness of the tropical lower stratosphere are realistic.

Upward movement of the annual variation in humidity in ERA5 is not as slow as observed ...

... but is slower than in ERA-Interim.
Quasi-biennial oscillation
Semi-annual oscillation

Too strong Mesospheric jet in ERA5 (41r2)

QBO consistent between ERA5 and ERA-Interim
ERA5 sea-ice issue over the Baltic in Summer (26 July 2006)

- ERA5 uses OSI-SAF reprocessed data before September 2007
 - Passive microwave radiometers suffer from land contamination
 - Leads to spurious ice each Summer over the Gulf of Finland
ERA5 sea-ice issue over the Baltic in Summer (26 July 2006)

ERA5 final

ERA5 uses OSI-SAF reprocessed data before September 2007
- Passive microwave radiometers suffer from land contamination
- Leads to spurious ice each Summer over the Gulf of Finland

Decided to re-run the HRES only (the ‘repair’ runs)
- Re-instate check on SST (but now for > 3 Celsius)
- In addition fix Antarctic problems for 1979, 1986 and 2004
- Ice over the Caspian, and improve on SST over Great Lakes
- Improve ozone in the polar night
- Some improvements in blacklist (e.g., MSU-4 NOAA-10 in 1986)

- Run in yearly streams
- Stick to original VarBC coefficients to minimize seams
ERA5 sea-ice issue over the Baltic in Summer (26 July 2006)

ERA-Interim

Sea Ice Cover (percent) for ERA-Interim, BALTIC
Area average (daily, monthly, yearly, moving average)

ERA5 uses OSI-SAF reprocessed data before September 2007
- Passive microwave radiometers suffer from land contamination
- Leads to spurious ice each Summer over the Gulf of Finland

Decided to re-run the HRES only (the ‘repair’ runs)
- Re-instate check on SST (but now for > 3 Celsius)
- In addition fix Antarctic problems for 1979, 1986 and 2004
- Ice over the Caspian, and improve on SST over Great Lakes
- Improve ozone in the polar night
- Some improvements in blacklist (e.g., MSU-4 NOAA-10 in 1986)
- Run in yearly streams
- Stick to original VarBC coefficients to minimize seams

ERA-Interim has some issues too
Lower stratospheric temperature

- ERA5 (41r2) has a large lower stratospheric cold bias

- **41r2 Jb** (modern observing system) is not able to provide large-scale corrections from radiosonde data. Only when abundant (anchored) GPSRO (2006 onwards) are assimilated, the situation improves.

- **1979 Jb** does a much better job pre-GPSRO, especially for Pinatubo in 1991.

- Need to see where to make the transition around 1998-2000 (introduction AMSU-A).

- Peak at end of 1986 due to spin-up MSU-4 NOAA-10 to be fixed in repair run.

Global-mean o-b for 60-85hPa radiosonde temperatures (K)

- ERA5: 1979 Jb
- ERA5: 41r2 Jb
- ERA-Interim
- Operations

Available now
Available end June
Upper stratospheric temperature

Shifts associated with J_6 are particularly large at 5hPa.
Global dry mass

More consistent than ERA-Interim, from the 1990s
Continuity between streams

Overlap during October – December 2009

- Continuity in ERA5 is generally better than ERA-Interim in the troposphere and stratosphere
- Continuity in ERA5 is generally poor in the mesosphere
Diurnal cycle of 10m wind speed

Discovered by EDF

3rd derivative of 10m wind speed

Wind speed at 10m (ms**-1) Paris

Analysis

Forecast

Annual climatology 2010-2017
Globally, the warmest and second warmest instances of each month of the year occurred between October 2015 and December 2017, with the warmest instances of each month of the year occurring from October 2015 to September 2016. Consequently, this latter period is the warmest twelve months on record and had a temperature $0.64^\circ C$ above the average for 1981-2010. 2016 is by far the warmest calendar year on record: its global temperature of $0.62^\circ C$ above average compares with the value of $0.53^\circ C$ for 2017, the second warmest calendar year, and $0.44^\circ C$ for 2015, the third warmest calendar year. The spread in the global averages from various temperature datasets has been unusually large in 2016 and 2017, and some datasets rank 2017 colder than 2015. The main reason for the spread stems from differences in the coverage of the polar regions and from differences in the estimates of sea-surface temperature. All datasets agree that the last three years were the warmest on record.
Summary and Final remarks

ERA-Interim is outdated and will be replaced by ERA5

As part of the Copernicus Climate Service, at ECMWF, the production of ERA5 is well underway:

- 31km global resolution, from 1950, hourly output, uncertainty estimate.
- **To date ERA5 2008-2017 is publicly available**
 - Release of other periods will be done in stages data access via the Climate Data Store soon.
- By end 2018: 1979 onwards.
- C3S User service Desk, Knowledge Base, FAQ’s, user support

The performance of ERA5 is very promising in the troposphere.

- Winds and Ocean waves
- improved global hydrological and mass balance
- reduced biases in precipitation,
- refinement of the variability and trends of surface air temperature.

ERA5 is freely available and a timely product is to be available one week behind real time (Q3 2018)