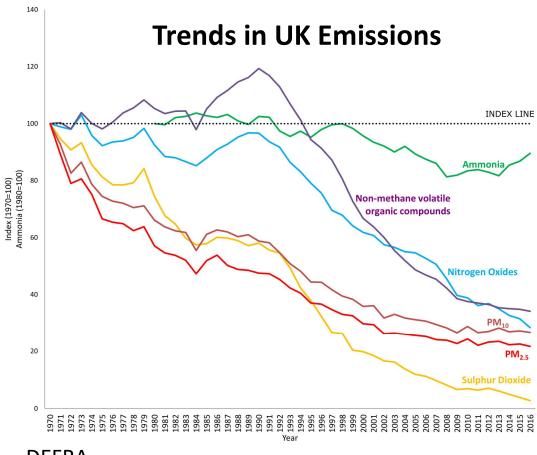
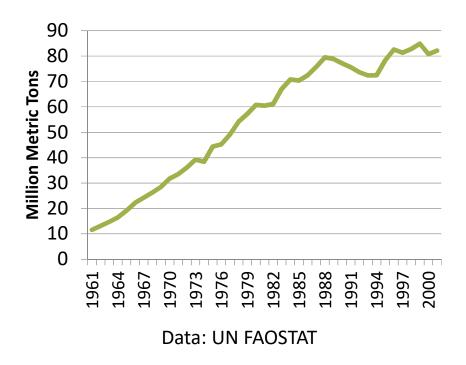
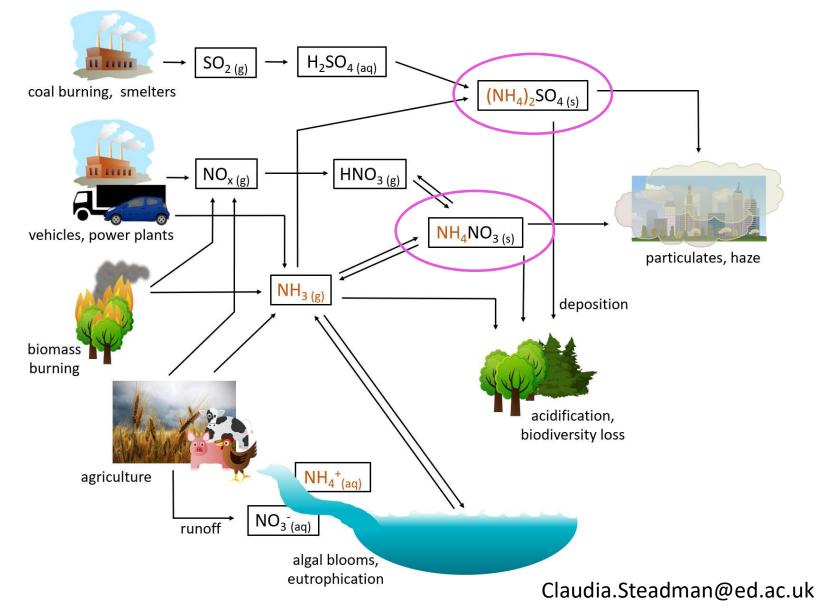

The global ammonia budget, simulated with the chemistry-climate model UKCA-CLASSIC


Claudia Steadman^{1,2}, David Stevenson², Mat Heal², Mark Sutton¹, David Fowler¹

Centre for Ecology & Hydrology
 University of Edinburgh



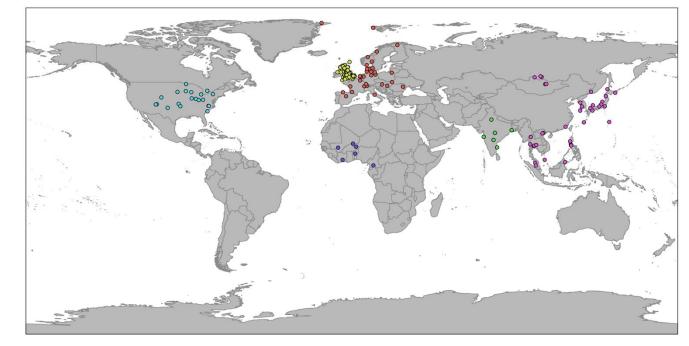
Regulations have resulted in a decrease in other emissions...


Global fertiliser use has increased

Global Nitrogenous Fertiliser Use

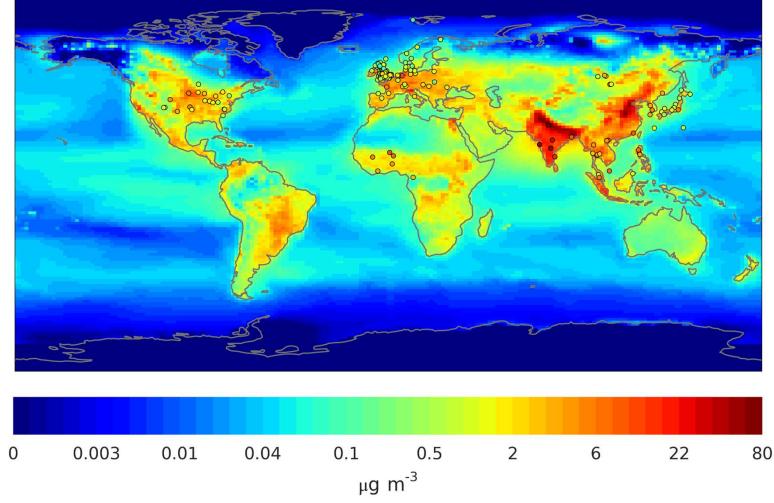
DEFRA

Ammonia and ammonium processes and impacts



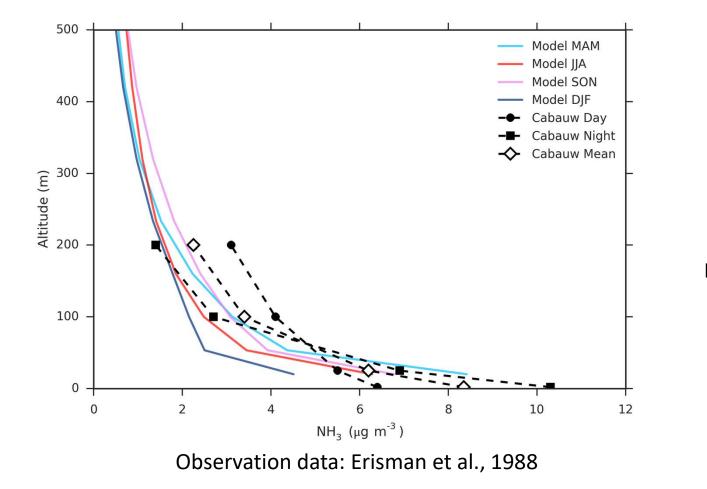
How weather influences ammonia concentrations

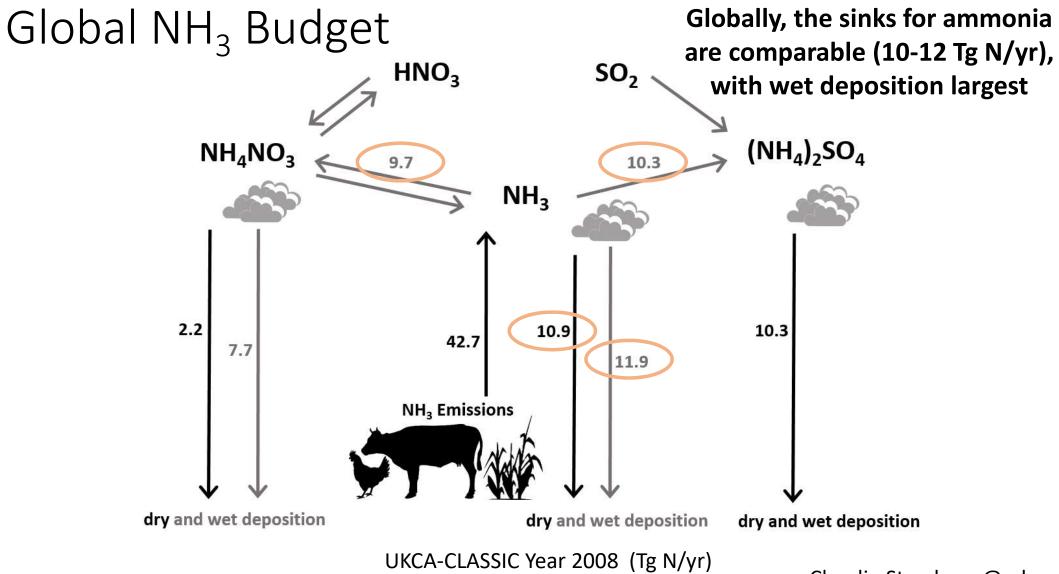
- Precipitation
 - Wet deposition
 - Vegetation \rightarrow dry deposition
- Temperature
 - Partitioning of aerosol vs gas phase
 - Volatilisation of NH₃
- Boundary layer \rightarrow less concentrated at surface
- Convection \rightarrow can travel longer distances
- Wind \rightarrow transport


Surface NH₃ Concentration Networks

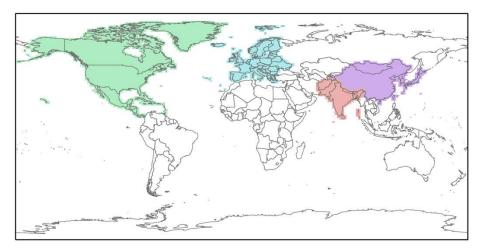
	Network	Region	Sites
	EMEP	Europe	37
\bigcirc	AMoN	North America	20
igodol	India NAMP	India	18
\bigcirc	EANET	East Asia	36
ightarrow	INDAAF	Africa	6
\bigcirc	UK NAMN	United Kingdom	109
	Total		226

Comparing model NH₃ to observations


NH₃ surface concentrations UKCA-CLASSIC Annual mean Year 2008


Differences NH₃ model - observations

UKCA-CLASSIC Annual mean **0.8** μg/m³ ³ 1.6 μg/m³ Year 2008 **1.3 μg/m³** -1.3 μg/m³ -11.3 μg/m³ -**4.5** μg/m³ global mean bias -0.4 µg/m³ (model – observations) -2 18 45 -45 -18 -7 0 2 7 µg m⁻³ Claudia.Steadman@ed.ac.uk


Vertical profile of NH₃ represented well

Measurements from Cabauw, Netherlands tower at heights of 2, 25, 100, and 200 m, during different seasons and meteorological conditions

Regional differences in the NH_3 budget

Together, these regions contain 64% of global NH₃ emissions

Claudia.Steadman@ed.ac.uk

Regional atmospheric NH₃ budgets (Tg N/yr)

	North America	Europe	South Asia	East Asia
Sources			\bigcirc	
Total Emissions	4.6	3.8	10.4	8.5
Sinks			\bigcirc	
Deposition				
Dry (to land)	1.1	0.9	3.0	2.4
Dry (to ocean)	0.1	0.2	0.3	0.2
Total Dry	1.2	1.1	3.3	2.6
Wet (scavenging by large scale precip.)	0.4	0.3	1.7	0.9
Wet (scavenging by convective precip.)	0.4	0.1	1.7	0.6
Total Wet	0.8	0.4	3.5	1.5
Total Deposition (Dry + Wet)	2.0	1.5	6.8	4.2
Aerosol Formation				
$\rm NH_4NO_3$	1.1	1.1	5.1	2.7
$(\mathrm{NH}_4)_2\mathrm{SO}_4$	1.0	0.6	1.3	2.1
Total NH ₃ Chemical Loss	2.0	1.8	6.4	4.8
Sources - Sinks	0.6	0.5	-2.7	-0.4
% Difference	14%	13%	-26%	-5%
Burden (Tg N)	0.01	0.005	0.05	0.02
Lifetime (days)	1.0	0.5	1.4	0.7

Regional differences in the NH₃ budget

- The largest sinks for ammonia in these regions are typically dry deposition and ammonium nitrate formation (exception is South Asia where wet deposition is larger than dry).
- Globally, wet deposition is a larger sink, indicating that the relative importance of sinks differs in regions with high and low ammonia emissions.

Regional atmospheric NH₃ budgets (Tg N/yr)

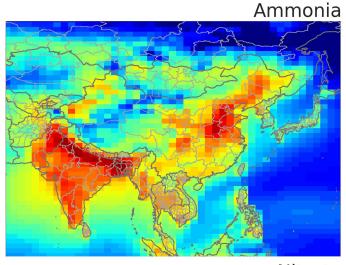
	North America	Europe	South Asia	East Asia
Sources				
Total Emissions	4.6	3.8	10.4	8.5
Sinks				
Deposition				
Dry (to land)	1.1	0.9	3.0	2.4
Dry (to ocean)	0.1	0.2	0.3	0.2
Total Dry	1.2	1.1	3.3	2.6
Wet (scavenging by large scale precip.)	0.4	0.3	1.7	0.9
Wet (scavenging by convective precip.)	0.4	0.1	1.7	0.6
Total Wet	0.8	0.4	3.5	1.5
Total Deposition (Dry + Wet)	2.0	1.5	6.8	4.2
Aerosol Formation				
$\rm NH_4NO_3$	1.1	1.1	5.1	2.7
$(\mathrm{NH}_4)_2\mathrm{SO}_4$	1.0	0.6	1.3	2.1
Total NH ₃ Chemical Loss	2.0	1.8	6.4	4.8
Sources - Sinks	0.6	0.5	-2.7	-0.4
% Difference	14%	13%	-26%	-5%
Burden (Tg N)	0.01	0.005	0.05	0.02
Lifetime (days)	1.0	0.5	1.4	0.7

Regional differences in the NH₃ budget

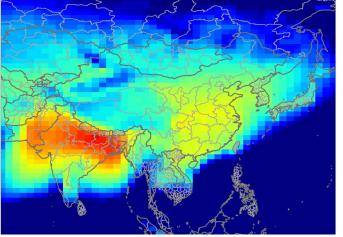
- The proportion of aerosol ammonium formed that is ammonium nitrate is 52 - 65% across North America, Europe, and East Asia; notably the aerosol ammonium formed in South Asia is 80% ammonium nitrate.
- The ammonia burden over South Asia is 33% of the global burden
- Lifetime longest in South Asia

Regional atmospheric NH₃ budgets (Tg N/yr)

	North America	Europe	South Asia	East Asia
Sources				
Total Emissions	4.6	3.8	10.4	8.5
Sinks				
Deposition				
Dry (to land)	1.1	0.9	3.0	2.4
Dry (to ocean)	0.1	0.2	0.3	0.2
Total Dry	1.2	1.1	3.3	2.6
Wet (scavenging by large scale precip.)	0.4	0.3	1.7	0.9
Wet (scavenging by convective precip.)	0.4	0.1	1.7	0.6
Total Wet	0.8	0.4	3.5	1.5
Total Deposition (Dry + Wet)	2.0	1.5	6.8	4.2
Aerosol Formation			•	
$\rm NH_4NO_3$	1.1	1.1	5.1	2.7
$(\mathrm{NH}_4)_2\mathrm{SO}_4$	1.0	0.6	1.3	2.1
Total NH ₃ Chemical Loss	2.0	1.8	6.4	4.8
Sources - Sinks	0.6	0.5	-2.7	-0.4
% Difference	14%	13%	-26%	-5%
Burden (Tg N)	0.01	0.005	0.05	0.02
Lifetime (days)	1.0	0.5	1.4	0.7


Regional differences in NO_3^- budget

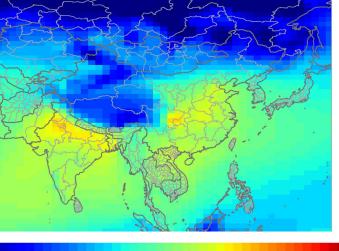
- Over half (53%) of net NH₄NO₃ production occurs in South Asia, and over a quarter (28%) occurs in East Asia.
- The burden of nitrate over South Asia is 49% of the global burden
- Of nitrate that does not decompose to form ammonia and nitric acid, wet scavenging by large scale precipitation is the largest sink in all four regions.
- The lifetime is longest is South Asia


Regional atmospheric NO_3^- budgets (Tg N/yr)

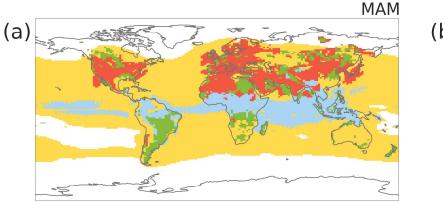
	North America	Europe	South Asia	East Asia
Source				
NH_4NO_3 production (net)	1.1	1.1	5.1	2.7
Sinks				
Deposition				
Dry	0.2	0.2	0.9	0.5
Wet (scavenging by large scale precip.)	0.6	0.6	1.4	1.9
Wet (scavenging by convective precip.)	0.1	0.1	1.0	0.4
Total Wet	0.7	0.7	2.5	2.3
Total Deposition (Dry + Wet)	1.0	0.9	3.3	2.8
Sources - Sinks	0.1	0.3	1.8	-0.1
% Difference	9%	24%	35%	-4%
Burden (Tg N as NO_3^-)	0.004	0.004	0.04	0.02
Lifetime (days)	1.3	1.6	4.2	2.0

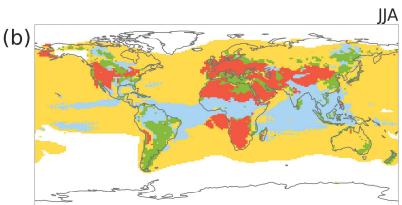
Dec-Jan-Feb Mean Surface Concentrations (0-36.7m)

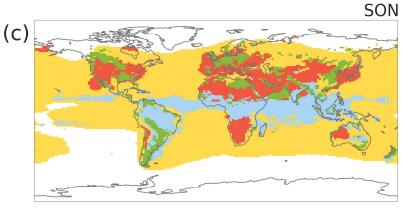
Nitrate

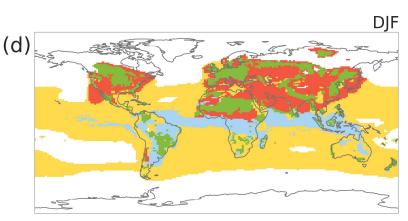

0.02 0.07 0.2 0.7 2 6 18 53 160 0 0.02 0.06 0.2 0.4 1 3 8 22 ppbv ppbv

Sulfur dioxide

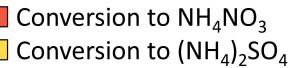

• C re a a a a a a

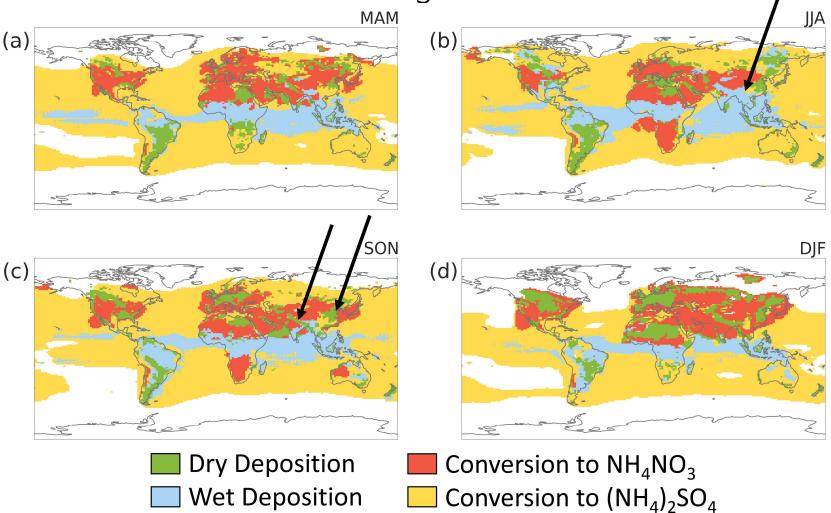

Sulfate


60

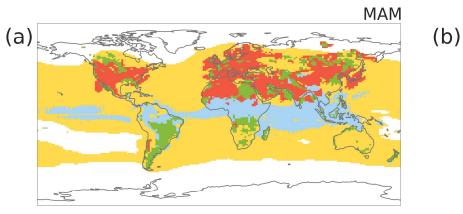


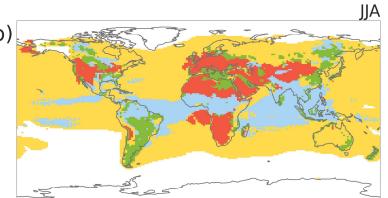
- Consistent with regional budgets, ammonium nitrate is a greater sink for ammonia than ammonium sulphate
- In South Asia 80% of ammonium aerosol formed is nitrate

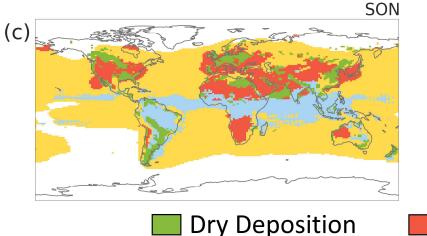




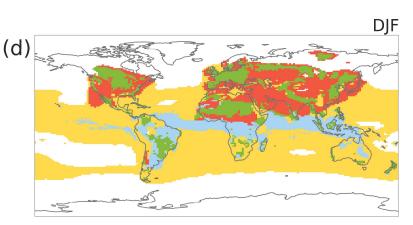
Dry DepositionWet Deposition

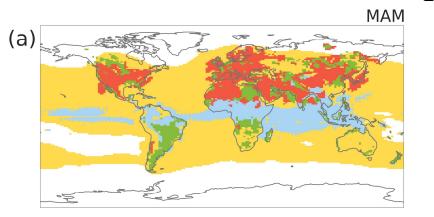

Sinks calculated for lowest 10 km of atmosphere. Sinks not shown where NH_3 column < 10 µg N/m².

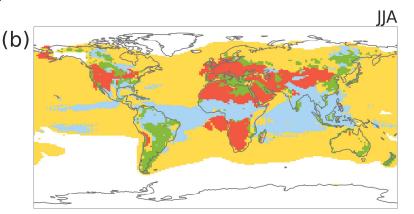


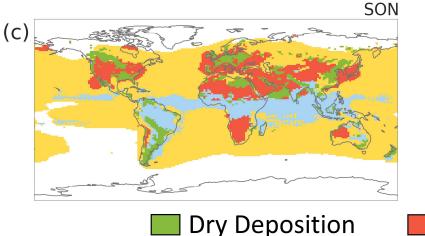

Over the IGP and the North China Plain, the dominant sink is generally dry deposition, (Jun-Jul-Aug monsoon wet deposition)

During the rest of the year the dominant sink is conversion to nitrate in most of India south of the IGP; in the southernmost part of India it is generally wet deposition.

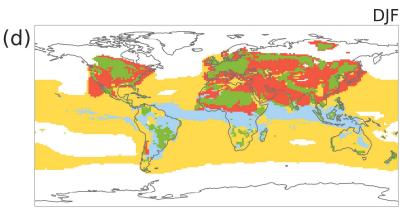

Sinks calculated for lowest 10 km of atmosphere. Sinks not shown where NH₃ column < 10 μ g N/m².


Wet Deposition

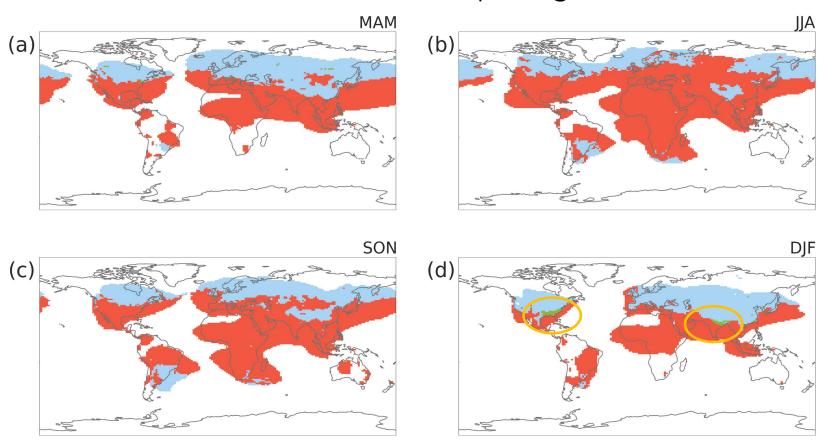



Conversion to NH₄NO₃
Conversion to (NH₄)₂SO₄

- North America: dry deposition and conversion to nitrate for most seasons.
- In Europe, the primary sink is dry deposition in autumn and winter; conversion to nitrate generally dominates in spring and summer.


Sinks calculated for lowest 10 km of atmosphere. Sinks not shown where NH₃ column < 10 μ g N/m².

Wet Deposition



Conversion to NH₄NO₃
Conversion to (NH₄)₂SO₄

- Ocean: generally wet deposition in the equatorial rain band.
- Open ocean at midlatitudes: conversion to ammonium sulfate dominates, as ammonia reacts with sulfur from DMS emitted from the ocean.
- Coastal waters in the NH, ammonium nitrate formation can be the biggest sink.

Sinks calculated for lowest 10 km of atmosphere. Sinks not shown where NH₃ column < 10 μ g N/m².

Dominant sink for NH₄NO₃

- Ammonium nitrate is less stable at warmer temperatures, and between 45° N and S, the dominant sink for nitrate is the decomposition into ammonia and nitric acid.
- Poleward of 45°, the biggest sink is generally wet deposition.

Conversion to NH₃ Wet Deposition Dry Deposition

Sinks calculated for lowest 10 km of atmosphere. Sinks not shown where NH_4NO_3 column < 10 (µg N as $NO_3^{-})/m^2$.

Atmospheric ammonia budget

- Large ammonia concentrations over South and East Asia
- Surface ammonia concentrations in reasonable agreement with observations in many regions
- The model underpredicts ammonia concentrations over West Africa and India (satellite suggests model overpredictions over India)
- Ammonia concentrations depend on emissions, chemistry (SOx, NOx) and weather
- Budgets for ammonia and ammonium nitrate vary by region due to a combination of these factors
- Dominant sinks vary dramatically, important processes driving ammonia concentrations differ across regions