Modelling photochemical impacts of haze pollution in a Chinese Megacity

RMetS Air Pollution in Megacities: 20th March 2019

Michael Hollaway1,a, Oliver Wild1, Ting Yang2, Yele Sun2,3, Weiqi Xu2,3, Conghui Xie2,3, Lisa Whalley4,5, Eloise Slater4, Dwayne Heard4,5, Dantong Liu6,7

1Lancaster University, 2Institute for Atmospheric Physics, Chinese Academy of Sciences (IAP-CAS), 3University of Chinese Academy of Sciences, 4University of Leeds, 5National Centre for Atmospheric Science (NCAS), 6Zhejiang University, 7University of Manchester, anow at: Centre for Ecology and Hydrology (CEH), Lancaster.
Air pollution in Beijing

- Global megacity with population of approximately 21 million people
- Rapid economic growth and industrialisation over the last 30 years
- Haze events are becoming more frequent with high loadings of fine particulate matter (PM$_{2.5}$)
- PM$_{2.5}$ is harmful to human health but can also severely reduce visibility.

Diagram:
- Scattered light
- Reduced incoming radiation
- Aerosol

(Lancaster University logo)
Impacts of haze on photolysis

- Photolysis is a key driver of oxidant photochemistry through effect on species such as O_3 and NO_2
- HONO photolysis important source of OH in urban environments
- Aerosols in haze can impact photolysis rates
- Implications for both local and regional atmospheric chemistry. E.g. Secondary aerosol formation
FAST–JX photolysis scheme

- Simulates the multiple scattering of aerosol and cloud layers in the atmosphere
- Simulates photolysis rates for 18 wavelength bins covering both the troposphere and stratosphere
- Can be driven in stand-alone mode with observations/re-analysis data
- Is also integrated into a number of atmospheric models and fully coupled to model chemistry schemes (E.g. UKCA).
Simulation of photolysis rates in Beijing – modifications to FAST - JX

- Modified to include NO$_2$ absorption
- Scattering phase functions updated based on campaign measurements
- Account for effects of coating on absorption by Black Carbon (BC)
- Driven using cloud data from ECMWF ERA5 reanalysis data
APHH campaigns: Nov-Dec 2016 & May-June 2017

• Aerosol composition and size monitored throughout both campaigns

• Lidar extinction by aerosol to show vertical distribution of aerosol layers

• Co-located PAX instrument to measure total aerosol extinction at the surface

• SP2 instrument to measure BC properties including core and coating size
Measured aerosol extinction during both campaigns.

Summer
How do we estimate vertical profiles of each aerosol species?

Example image

SO_4^{2-}?

NO_3^-?

Cl^-?

BC?

OA?

Use optimisation factoring in hygroscopic growth
Which aerosols contribute the most to AOD?

- Haze days: PM$_{2.5}$ > 75 µgm$^{-3}$ (AQI 100)
- SO$_4$ and BC dominate winter haze
- Organic aerosol dominate summer haze
- Largest AOD tend to be higher altitudes in summer – regional transport?
How well does FAST-JX capture haze events over Beijing?

![Graphs showing diurnal mean for summer and winter.](image)
Which aerosols have the largest impact on photolysis rates?

- Absorbers dominate towards the surface, scatterers higher up.
- Effect from absorbers more pronounced through column in winter.
- Absolute changes in J rates higher in the summer.
Impacts on mean diurnal JO$_3$ and NO$_2$ profiles

- Impacts of all aerosols versus clear sky conditions
- Largest reductions in JO$_3$ of 33.7% in winter
- Largest reductions in JNO$_2$ of 66% in summer
Haze impacts versus cloud impacts

- In winter aerosol impacts dominate <1km.
- Aerosol and cloud have similar effects at surface in summer.
- In summer aerosol effects dominate >3km.
- Absolute changes in J rates higher in summer!
Potential photochemical impacts using a simple box model

• Simple VOC oxidation scheme based around generic reaction set

• Aerosols result in potential reductions of ~12% in surface O_3 concentrations (0.0 to 3.0% for OH)

• What are the implications for oxidants if PM controls implemented?
Summary

- Severe haze pollution episodes occur in both winter and summer resulting in up to 34% reduction in JO$_3$ (winter) and 66% reduction in JNO$_2$ (Summer).
- Largest magnitude reductions are seen during summer months – despite PM in general being lower.
- Absorbing species dominate response of photolysis rates in winter and scatterers dominate in the summer.
- During both campaigns in severe haze pollution aerosol effects dominate over clouds (when present).
- Severe haze potentially reduces surface O$_3$ and OH concentrations by up to ~12% and 3% respectively.
- What are potential feedbacks of PM removal on photochemistry?
Thank You!

Questions?