

Are Regional Climate Perils Related?

Risk of Global Weather Connections, Lloyd's and Met Office 2016

> COLLEGE OF LIFE AND ENVIRONMENTAL

Hypothesis

The Atlantic Hurricane Season and European winter windstorm season are *not* independent from one another

A pathway exists between the two through a climate teleconnection

Hypothesised pathways

2. Rising motion and associated upper level wind flow from Equatorial Pacific to Atlantic

1. El Niño event in Eastern Tropical Pacific

3. Reduction in Atlantic Hurricanes due to upper level wind shear increase

COLLEGE OF LIFE

Gray 1984 Scaife et al. 2017

Hypothesised pathways

COLLEGE OF LIFE AND ENVIRONMENTAL

Data Limitations

Reliable count data for both Tropical and Extratropical Cyclones only in the satellite era (1979-present)

Extend by building event climatology from Ensemble Prediction System

COLLEGE OF LIFE

Pearson Correlation coefficient: **-0.2**Not significant at the 95th percent confidence level
Tropical Cyclone count: IBTrACS best Track data
Extratropical Cyclone count: Cyclone Tracking in
ERA-interim

Methodology

Repurpose a forecast ensemble to treat each ensemble member as a different climate realization

National Hurricane Center, Hurricane Katrina Uncertainty August 25th

COLLEGE OF LIFE AND ENVIRONMENTAL

Ensemble Prediction System **ECMWF**

European Centre for Medium Range Weather Forecasting (ECMWF) System 5 EPS (SEAS5)

51 ensemble members over 36 years (1981-2016), total of 1836 model years

Initialised 1st of each month, run for 7 months. Selected 1st of August initialisation to cover peak Atlantic Hurricane Season (Aug-Oct) and peak European Windstorm season (Dec-Feb)

Horizontal grid spacing TCo319 (~35km, cubic grid)

Event Tracking Methodology

Find Clusters of 98th percentile windspeed exceedance (Leckebusch et al. 2008)

Track storms over time using nearest neighbour approach (WiTRACK; Kruschke 2015)

Focus on area of damaging winds, rather than central core pressure

COLLEGE OF LIFE AND ENVIRONMENTAL

Event Tracking Methodology

EUMETSAT storm track, from Meteo Sat-9 Air Mass Product. Windstorm Klaus 2009

COLLEGE OF LIFE AND ENVIRONMENTAL SCIENCES

Blue = Murray and Simmonds (1991) min. pressure tracking methodology

13

Extended Event Set

Observations from ERA interim

SEAS5 climatology

Atlantic TC Events

Atlantic ETC events

COLLEGE OF LIFE AND ENVIRONMENTAL SCIENCES

Tropical Cyclone Season in SEAS5

European Windstorm Season

COLLEGE OF LIFE AND ENVIRONMENTAL

Seasonal Intensity Measures

Number of Storms

Total Seasonal Storm Severity Index (SSI)

Land Impacting SSI

Probability of Independence

Theoretical Calculation of *Independent* Hurricane and European windstorm season

Observed European Windstorm Seasons - 90th percentile Hurricane season

Predicted Number of Seasons, if independent

COLLEGE OF LIFE AND ENVIRONMENTAL

Observed European Windstorm Seasons - 90th percentile Hurricane season

Predicted Number of Seasons, if independent

COLLEGE OF LIFE AND ENVIRONMENTAL

Observed European Windstorm Seasons - 90th percentile Hurricane season

Total SSI

Land Impacting SSI

Number of Storms

Observed European Windstorm Seasons

Track Density of windstorm season following top 10% hurricane season – windstorm season following bottom 10% hurricane season

Total SSI

Land Impacting SSI

Number of Storms

COLLEGE OF LIFE AND ENVIRONMENTAL

Conclusions and Future Work

- A highly active (more than 90th or 95th percentile) Atlantic Hurricane season is followed by a highly active European Windstorm season **less often** than if they were independent.
- A highly active Atlantic Hurricane season is followed by a highly inactive (less than 5th or 10th percentile) European Windstorm season **more often** than if they were independent.
- Intense Atlantic Hurricane season precedes slight storm track shift towards Central and Southern Europe
- Currently testing hypothesised pathways which explain this connection

TC WiTRACK interannual variability

All sig. at 99% level

Interannual variability of same magnitude as observations, with significant covariation

August Initialized SEAS5 ensemble mean performs as CoreLogic well as ERAinterim

Individual Case Studies

Range of most damaging Hurricanes, 1989-2009

IBtRACS
 WiTRACK 850
 WiTRACK 10m

CoreLogic*

Case study Floyd

WiTRACK 850

IBtRACS
 WiTRACK 850

+ WiTRACK 10m

+ WiTRACK 10m

IBtRACS