

Studying convective organisation with Deep Learning

Leif Denby, ICAS, University of Leeds

3/7/19

RMetS Atmospheric Science Conference

Barbados

~100km

"flowers"

~100km

<u>OOkm</u>

"gravel"

Aim

 produce software to automatically segment and classify a satellite image into regions with differently organised convection

Motivation

- Form of organisation affects radiative properties (albedo) and cloud-radiative feedback contributes majority of climate sensitivity uncertainty (Bony et al 2015 and many more)
- **Relative importance of local and large-scale** factors driving convection into specific forms of organisation are **unknown**
- Use tool on satellite images to identify times where different classes have formed and correlate with large-scale state diagnosed from reanalysis data (e.g. ERA-Interim)

"Archetypes" of convective organisation?

"fish"

"gravel"

Stevens et al 2019, submitted

"Archetypes" of convective organisation?

Machine learning modelling aim

 Produce for every tile (t) of a satellite image an *embedding*. A point in Ndimensional space

- Enforce that tiles with similar cloud structure a close in this N-dimensional space
- Previous successful application in Google's word2vec (Mikolov et al 2013):
 - f("santa") f("christmas") ~ f("man")
 - f("london") f("england") ~ f("copenhagen") f("denmark")
- Using technique of Tile2Vec (Jean et al 2018) which learnt land-use classification

Using convolutional network to produce embedding

- Training done with fastai (built on pytorch)
- Use pre-trained Resnet34
- Replace last layer by fully connected layer
- Currently using N_d=100 embedding length

neuralnetwork

Using convolutional network to produce embedding

neuralnetwork

- Training done with fastai (built on pytorch)
- Use pre-trained Resnet34
- Replace last layer by fully connected layer
- Currently using N_d=100 embedding length
 - How does this work?
 - See workshop in next session

Model training

 Every training example consists for three tiles (triplet) the anchor (t_a), neighbour (t_n) and distant (t_d) tiles.

Model training

- Every training example consists for three tiles (triplet) the anchor (t_a), neighbour (t_n) and distant (t_d) tiles.
- Use loss function which optimises for anchor and neighbour tiles being close in embedding space and distant tile being far away (measured by Euclidian distance):

Model training

- Every training example consists for three tiles (triplet) the anchor (t_a), neighbour (t_n) and distant (t_d) tiles.
- Use loss function which optimises for *anchor* and *neighbour* tiles being close in embedding space and *distant* tile being far away (measured by Euclidian distance):

 $L(t_a, t_n, t_d) = max(0, ||f_{\theta}(t_a) - f_{\theta}(t_n)||_2 - ||f_{\theta}(t_a) - f_{\theta}(t_d)||_2 + m)$

What does this embedding look like?

First four dimensions of embedding with a 10 random examples highlighted

So what does this embedding give us?

Can rank tiles by distance (in embedding space) to specific tile of interest (showing half of entire *study* set)

	The star								Arch Star Fri	and a second					4				A MAR
€10 /* - €						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							44						i sin
	1											and the second	the.	Ŷ			1200 C		and a second
		and a second		. A	- C.		i Stand				1						a second		
				1997 - 1997	A State	and the second				×.							A.		
er gal	47.			a god					A.						3.20				
a) Ex								*		N.	1	A.					X		
-	1912					S. A.	* ,									a start de		J.	
		and the second	100			S		5.9 								1.1	-		
2014	at the	12 13	1 13			1. A. 1.		SOLA .	1995 A.L.	N. 5163	1.4.1			ALC: NO.	1422		270	Sec. 15	A COM

So what does this embedding give us?

- Can do (hierarchical) clustering to find out how tiles clump in embedding space
- Nested clusters share similar features
- Vertical distance in *dendrogram* measure of persistence of clusters

Do different cloud structures have different radiative properties?

 Per-cluster mean of channel 1 (visible) and channel 9 (IR), error in the mean as error bars. Nearest tile to mean rendered as example

 Separation of clusters indicate each has specific radiative properties

Summary

- a neural network can, without labelled training data:
 - automatically discover different forms of cloud organisation
 - through this learn to group input images containing similar cloud structures together
- different cloud structures have distinct radiative properties
- benefits of unsupervised model:
 - 1. can be applied to any spatial dataset with limited effort as no hand-labelling is required
 - 2. automatically discovers the types of structures present in the input
 - 3. produces a representation of the similarity between these structures.

Thank you!

Questions?