Ammonia in the 21st Century: Challenges for Measurements and Mitigation

Dr Christine Braban and CEH colleagues Centre for Ecology & Hydrology, RMetSoc July 2019

With content from colleagues at CEH including MM Twigg, YS Tang, MR Jones, S Leeson, U Dragosits-Harding, S. Riddick, C. Steadman, E Nemitz, M A Sutton Work in collaborations with NPL, METAS, Ricardo and many others!

Knowledge gaps in all areas

Global nitrogen flows around year 2000 (million tonnes N / year)

Past change – future risks Global fertilizer use

Sutton and Bleeker Nature 2013 based on FAO projections

Global ammonia in a future climate

Sutton et al. Phil Trans. Roy. Soc., 2013

Controlled cuvette experiments

[NH3](%)

NH₃ emission from different substrates

Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

NH₃ emission from different nesting habits

NH₃ emission from different substrates (%)

Perez-Alcon E. (project student, ERASMUS programme)

Knowledge gaps in all areas

Emission inventories: e.g. UK National

A simplified inorganic picture of chemical processing in the atmosphere

Measurement of ammonia in context

NH₃

- Reaction
- Precipitation
- consumption

Re-emission

Ammonia measurement challenges

Environmental Pollution 251 (2019) 668–680

More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in $PM_{2.5}^{\ddagger}$

Atmospheric

and Physics

Chemistry

Xiao-Yan Fan, Jing-Feng Gao^{*}, Kai-Ling Pan, Ding-Chang Li, Hui-Hui Dai, Xing Li

z Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124,

SCIENTIFIC REPORTS

OPEN

Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particula

Received: 23 June 2016 Accepted: 14 November 2016 Published: 12 December 2016

matter

Jing-Feng Gao, Xiao-Yan Fan, Kai-Ling Pan, Hong-Yu Li & Li-Xin Sun

Atmos. Chem. Phys., 18, 3641-3657, 2018 https://doi.org/10.5194/acp-18-3641-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

IIC.	Cicativ	
60	۲	I
\sim	BY	l

Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ: application to the continental US

Shupeng Zhu¹, Jeremy R. Horne¹, Julia Montoya-Aguilera², Mallory L. Hinks², Sergey A. Nizkorodov², and Donald Dabdub

¹Computational Environmental Sciences Laboratory, Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, 92697-3975, USA ²Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-3975, USA

Correspondence: Donald Dabdub (ddabdub@uci.edu)

Received: 12 October 2017 – Discussion started: 6 November 2017 Revised: 1 February 2018 - Accepted: 1 February 2018 - Published: 13 March 2018

Measurement of ammonia in context

Knowledge gaps in all areas

Current Instrumentation

Wet chemistry

Conductivity detector block

Instrumentation

Non-extractive sampling

Most commercial spectrometers are based on infrared spectroscopy, though UV instruments also developing

Ammonia Sensors

Alphasense NH₃ Sensor: NH3-A1 Range: 0 – 50 ppm

Alphasense NH₃ Sensor: NH3-B1 Range: 0 – 100 ppm

http://www.indsci.com/products/ammonia/#

Personal single-gas detector GasBadge® Pro

Multi-gas detectors: Ventis™ Pro Series MX6 iBrid™ Radius™ BZ1 Area Monitor

Range = detect low ppm ammonia

Atmospheric Composition Change

National Ammonia Monitoring Network

Local Environmental Impact information

Calibration

V = DAt/L

t = time of exposure (s)A = area of absorbent filter (m²) L = diffusion path length (m) $D = 2.09 \text{ x } 10^{-5} \text{ m}^2 \text{ s}^{-1} \text{ at } 10^{\circ}\text{C} (\text{NH}_3)$

	parameters	unit
Int diameter	0.021	m
Cross Area	0.000346361	m ²
Diffusion coefficient (@10°C)	0.0000209	m ² s ⁻¹
length(z)	0.00804	Μ
Sampling Rate	9.00365E-07	m ³ s ⁻¹
	3.24131472	L hr-1
	0.003241315	m ³ hr ⁻¹

 $D(T,1) = D(0,1)(T/To)^{1.81}$

 $D = 2.226 \text{ x } 10^{-5} \text{ m}^2 \text{ s}^{-1} \text{ at } 20^{\circ}\text{C} (\text{NH}_3)$

Calibrated Uptake Rate @ 20° C = 3.45 x 10^{-3} m³ hr⁻¹

cf 3.49 x 10⁻³ m³ hr⁻¹ (chamber exposure validation)

Martin N. et al. (2018) Validation of ammonia diffusive and pumped samplers in a controlled atmosphere test facility using traceable Primary Standard Gas Mixtures. Atm. Env. Submitted

Contamination artefacts

Inlet	μg NH ₄ +	µg NH ₃ m ⁻³
Covered with Solid Cap	0.07 ± 0.01 (n = 18)	0.36 ± 0.07 (n = 18)
Not covered	0.37 ± 0.09 (n = 12)	1.85 ± 0.45 (n = 12)
Covered with parafilm	0.16 ± 0.04 (n = 12)	0.81 ± 0.19 (n = 12)

Diffusive and pumped samplers tested in NPL CATFAC

2016 Ammonia Intercomparison

Note: Not to scale North field

Passive NH₃ samplers

NH₃ (ppb)

Instruments vs Ensemble median (23/08 - 29/08)

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

CIEI

Twigg et al. *in prep*

Relative deviation from the mean

Knowledge gaps in all areas

Field calibrations

- 1 dynamic and 1 static calibration systems present
- METAS traceable reference gas generator (REGaS) used to check concentrations before and after intercomparison for low flow instruments (Picarro, LGR, LSE, Tiger Optics)
- NPL static calibrator used for high flow instruments and mini DOAS

Provisional field calibration results

REference GaS generator (ReGaS1) – dynamic gas generator developed and characterised by WP1 of MeNH3 project.

Twigg et al. in prep

Conclusions from state of the art instruments

SET UP IS MAJOR FACTOR IN GETTING HIGH QUALITY MEASUREMENTS OF NH_3

- Users still need some understanding in order to choose the right instrument for their application
- Instruments either need minimal inlet or a high-flow inlet with subsampling off for operation
- Dynamic calibration should work but instrument response time make calibration challenging
- Quantitative measurement at "background" to close to emissions challenging

Knowledge gaps in all areas

How to improve the situation in the 21st century?

- Emitting less directly
 - Process change
 - Efficiency of use
 - Fewer "leaks" in the system
- Recapturing emissions
 - Green removal e.g. Agroforestry or "sacrificial" vegetation
 - Barriers (green or otherwise) between emissions and impacts

Mitigation Measures for Reducing Ammonia

Spreading - Injecting manure

Housing – ammonia scrubbing

Increased grazing and woodland effect

Multiple wins?

Tree belts for ammonia mitigation offers

improved animal welfare under silvopastoral systems

reducing critical load exceedance on protected sites

carbon sequestration

visibility screening around housing units

Centre for Ecology & Hydrology Natural environment research council

multi win wins for the famer and society

supporting policy and regulators in emission reduction

supporting national afforestation policies.

price advantage of 'woodland chicken/pig' products

Dis-benefits?

where NH₃ concentrations are high the rate of dry deposition is less

> young trees may 'suffer' with increased NH₃ concentrations – careful species selection

adding nitrogen into the system can cause nutrient imbalances availability of base cations

trees may encourage wild birds and bird-flu infection

opportunity cost – changing arable to woodland

Planting Designs

Planting design for capturing ammonia emissions from housing systems

The backstop trees should be of a conifer type or evergreen or something which can make a thick barrier. Spacing should be 2m or less (if appropriate) to acheive a good barrier.

Farmtreestoair: New tool based on current knowledge

http://www.farmtreestoair.ceh.ac.uk/

Conclusions

- Atmospheric chemistry of ammonia is in its infancy
- Ecosystem, climate and human health impacts beginning to be well documented
- There is a need for laboratory process studies, further development of instrumentation
- On-line long term monitoring of ammonia beginning in the UK, and across the world
- Review paper on measurement protocols and knowledge gap in preparation
- Global emissions in most scenarios get bigger throughout the 21st century, so emission reduction and/or mitigation actions need to be prioritised

Thank you very much for your attention. ③

Any questions.

chri2@ceh.ac.uk

