

Joint Weather & Climate Research Programme – a partnership in weather and climate research

UKESM-hybrid: focusing resolution where it's most needed

Marc Stringer¹²,

Richard Hill¹⁴, Mohit Dalvi⁴, Colin Jones¹³ and Colin Johnson¹³

¹UKESM core team ²NCAS-CMS, University of Reading ³NCAS, University of Leeds ⁴Met Office Hadley Centre

Which atmospheric sciences benefit most from high resolution?

Core Dynamics (Jung et al, 2012)

© Copyright EUMETSAT 2013

Convection (Tao and Chern, 2017)

<u>Which sciences have the greatest</u> <u>share of the computation?</u>

2/3rd of total computation is required for Aerosol and Chemistry (4 years ago it was 4/5th of the computation).

© Crown copyright

UKESM N96 ORCA1

© Crown copyright

We tried just reducing the resolution of UKCA

Problems

- Coupling ~200 3D
- How do you degrade integer and logical fields?

UKESM-hybrid N96 N48 ORCA1

© Crown copyright

Locking the physical atmosphere of Jnr to that of Snr

Which dynamical core fields from Snr should overwrite those over Jnr?

- Definitely: U, V and θ_{vd}
- Maybe: moisture fields, W, D η /Dt and π .
- Definitely not: ρ_d (ruins mass conservation in Jnr)

Which JULES fields?

Probably: soil moisture and temperature

How we're measuring success of locking?

- Trying to minimise drift of all dynamical core fields
- Minimise energy errors in Jnr's atmosphere
- Using the standard evaluation tools, e.g. valnote

The feedbacks from Jnr to Snr

Fields passed from Jnr to Snr are remapped to the higher resolution with the OASIS3-coupler, they will be a slightly smudged version of the lower resolution field.

These 49*3D fields are

- 44 GLOMAP-mode fields for RADAER (optical properties for radiation)
- O₃, N₂O & CH₄ to calculate gas mixing ratios for radiation
- Total number of activated aerosol particles (for calculating cloud droplet number concentration)
- Δq (UKCA has a feedback on the moisture)

<u>Comparing UKESM AMIP N216</u> <u>vs UKESM-hybrid AMIP N216</u> <u>N96 vs UKESM AMIP N96</u>

Absolute annual mean TOA Outgoing Longwave Radiation (left column) and bias in TOA OLR against CERES observations (right column).

Speed of UKESM-hybrid

UKESM vs UKESM-hybrid with the same nodes

National Centre for Atmospheric Science

Configuration	Nodes	Speed (model years/day)	% faster
UKESM AMIP N96	20	2.24	
UKESM-hybrid AMIP N96 N48	20 (10 for Snr; 10 for Jnr)	3.73	67%
UKESM N96 ORCA1	25 (20 for Atm; 5 for Ocn)	2.14	
UKESM-hybrid N96 N48 ORCA1	25 (10 for Snr; 10 for Jnr; 5 for Ocn)	3.48	63%
UKESM AMIP N216	60	1.10	
UKESM-hybrid AMIP N216 N96	60 (36 for Snr; 24 for Jnr)	1.82	65%

For the same resources, hybrid model is about 65% faster

Speed of UKESM-hybrid II

Top speeds on two OpenMP threads

Configuration	Nodes	Speed (model years/day)	% faster
UKESM AMIP N216	242	2.16	
UKESM-hybrid AMIP N216 N96	207 (130 for Snr; 77 for Jnr)	3.72	72%
UKESM N216 ORCA025*	191 (160 for Atm; 31 for Ocn)	1.67	
UKESM-hybrid N216 N96 ORCA025*	242 (98 for Snr; 77 for Jnr; 67 for Ocn)	2.85	71%

*Run without MEDUSA, otherwise MEDUSA would limit speed

Top speed of hybrid model is about 71% faster

Options to improve speed of hybrid model

- Reduce the resolution of Jnr
- Move more science out of Snr, such as
 RADAER (optical properties of radiation)
 Radiation
- Reduce the domain of Snr

□Reduce the computation in Stratosphere for Snr

 Radiation column needs thinking about (we could apply BC on radiation or just reduce the vertical levels in Snr's stratosphere)

□Run Snr(s) as a limited area model (LAM)

Next phase is developing UKESMhybrid N96 N48 ORCA1

Reasons

- N96 N48 ORCA1 is computationally cheap possible to run many long simulations
- It can be compared with UKESM (a model we know well)

What needs doing?

• Finish developing UKESM N48 ORCA1

□ It did have too much cloud and was too warm

<u>Summary</u>

- 2/3rd of computation for UKESM is for Aerosol and Chemistry
- Compared to running everything at the higher resolution
 The hybrid model is about 65% quicker
 - □Produces similar results (at least up to about 5 years)