UKESM-hybrid: focusing resolution where it’s most needed

Marc Stringer12, Richard Hill14, Mohit Dalvi4, Colin Jones13 and Colin Johnson13

1UKESM core team
2NCAS-CMS, University of Reading
3NCAS, University of Leeds
4Met Office Hadley Centre
Which atmospheric sciences benefit most from high resolution?

Core Dynamics (Jung et al, 2012)

Convection (Tao and Chern, 2017)
Which sciences have the greatest share of the computation?

2/3rd of total computation is required for Aerosol and Chemistry (4 years ago it was 4/5th of the computation).
Should we run the sciences at different resolutions?

Benefits of higher resol’

High

Convection

Core dynamics

JULES & Boundary layer

Radiation

Microphysics

Aerosol

Chemistry

Low

Convection

Core dynamics

Microphysics

Radiation

ONLY RUN AT LOW RESOLUTION

JULES & Boundary layer

Computational expense

Low
Except XIOS, all coupling and re-mapping are done with the OASIS3-MCT coupler.
We tried just reducing the resolution of UKCA

Problems

- Coupling ~200 3D fields
- How do you degrade integer and logical fields?
UKESM-hybrid N216 N96
ORCA025 ORCA075

JULES
UM N216 (Snr)

Dynamical core fields

Aerosol & chemistry

JULES
UM N96 (Jnr)

UKCA

CICE
NEMO ORCA025

We’re trying this with DEGRAD

XIOS

MEDUSA ORCA075
Coupling frequency between Snr and Jnr

![Diagram showing coupling frequency between Snr and Jnr. The diagram illustrates the model time (vertical axis) and real time (horizontal axis). The UKCA timestep for Jnr is highlighted with a purple and blue shaded area. Coupling timesteps occur every hour.](Image)
Locking the physical atmosphere of Jnr to that of Snr

Which dynamical core fields from Snr should overwrite those over Jnr?
• Definitely: U, V and θ_{vd}
• Maybe: moisture fields, W, $D\eta/Dt$ and π.
• Definitely not: ρ_d (ruins mass conservation in Jnr)

Which JULES fields?
• Probably: soil moisture and temperature

How we’re measuring success of locking?
• Trying to minimise drift of all dynamical core fields
• Minimise energy errors in Jnr’s atmosphere
• Using the standard evaluation tools, e.g. valnote
The feedbacks from Jnr to Snr

Fields passed from Jnr to Snr are remapped to the higher resolution with the OASIS3-coupler, they will be a slightly smudged version of the lower resolution field.

These 49*3D fields are

• 44 GLOMAP-mode fields for RADAER (optical properties for radiation)

• \(\text{O}_3, \text{N}_2\text{O} \) & \(\text{CH}_4 \) to calculate gas mixing ratios for radiation

• Total number of activated aerosol particles (for calculating cloud droplet number concentration)

• \(\Delta q \) (UKCA has a feedback on the moisture)
Comparing UKESM AMIP N216 vs UKESM-hybrid AMIP N216 N96 vs UKESM AMIP N96

Absolute annual mean TOA Outgoing Longwave Radiation (left column) and bias in TOA OLR against CERES observations (right column).
Speed of UKESM-hybrid

UKESM vs UKESM-hybrid with the same nodes

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Nodes</th>
<th>Speed (model years/day)</th>
<th>% faster</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKESM AMIP N96</td>
<td>20</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>UKESM-hybrid AMIP N96 N48</td>
<td>20 (10 for Snr; 10 for Jnr)</td>
<td>3.73</td>
<td>67%</td>
</tr>
<tr>
<td>UKESM N96 ORCA1</td>
<td>25 (20 for Atm; 5 for Ocn)</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>UKESM-hybrid N96 N48 ORCA1</td>
<td>25 (10 for Snr; 10 for Jnr; 5 for Ocn)</td>
<td>3.48</td>
<td>63%</td>
</tr>
<tr>
<td>UKESM AMIP N216</td>
<td>60</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>UKESM-hybrid AMIP N216 N96</td>
<td>60 (36 for Snr; 24 for Jnr)</td>
<td>1.82</td>
<td>65%</td>
</tr>
</tbody>
</table>

For the same resources, hybrid model is about 65% faster
Speed of UKESM-hybrid II

Top speeds on two OpenMP threads

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Nodes</th>
<th>Speed (model years/day)</th>
<th>% faster</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKESM AMIP N216</td>
<td>242</td>
<td>2.16</td>
<td></td>
</tr>
<tr>
<td>UKESM-hybrid AMIP N216 N96</td>
<td>207 (130 for Snr; 77 for Jnr)</td>
<td>3.72</td>
<td>72%</td>
</tr>
<tr>
<td>UKESM N216 ORCA025*</td>
<td>191 (160 for Atm; 31 for Ocn)</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>UKESM-hybrid N216 N96 ORCA025*</td>
<td>242 (98 for Snr; 77 for Jnr; 67 for Ocn)</td>
<td>2.85</td>
<td>71%</td>
</tr>
</tbody>
</table>

*Run without MEDUSA, otherwise MEDUSA would limit speed

Top speed of hybrid model is about 71% faster
Options to improve speed of hybrid model

• Reduce the resolution of Jnr

• Move more science out of Snr, such as
 ❑ RADAER (optical properties of radiation)
 ❑ Radiation

• Reduce the domain of Snr
 ❑ Reduce the computation in Stratosphere for Snr
 ◦ Radiation column needs thinking about (we could apply BC on radiation or just reduce the vertical levels in Snr’s stratosphere)
 ❑ Run Snr(s) as a limited area model (LAM)
Next phase is developing UKESM-hybrid N96 N48 ORCA1

Reasons

• N96 N48 ORCA1 is computationally cheap – possible to run many long simulations

• It can be compared with UKESM (a model we know well)

What needs doing?

• Finish developing UKESM N48 ORCA1

 ❑ It did have too much cloud and was too warm
Summary

- 2/3rd of computation for UKESM is for Aerosol and Chemistry

- Compared to running everything at the higher resolution
 - The hybrid model is about 65% quicker
 - Produces similar results (at least up to about 5 years)