Studying tropospheric chemistry in Australasia

Using MAX-DOAS measurements

Robert Ryan,
PhD student, School of Earth Sciences, The University of Melbourne

rgryan@student.unimelb.edu.au rsquared_aus
Acknowledgments

Robyn Schofield, Peter Rayner (University of Melbourne)
Steve Rhodes, Matt Tully (B.Meteorology, Melbourne)
Stephen Wilson, Nicholas Jones (University of Wollongong)
Richard Querel, Paul Johnston (NIWA NZ)
Udo Frieß, Johannes Lampel (IUP Heidelberg, Germany)
Outline

• Introduction: Tropospheric oxidation chemistry in Australasia
• MAX-DOAS

• Results: Lauder, New Zealand and Melbourne, Australia

• Discussion: controls on tropospheric oxidation chemistry
 - O_3 production regime
 - OH radical production
 - Tropospheric O_3 retrievals
Tropospheric oxidation chemistry

Australasian perspective
- Vastly under-sampled
- High but very poorly constrained biogenic VOC emissions
- Important local air quality problems in cities like Melbourne and Sydney
- Interactions between urban and rural airmasses

And why should you care?
- Perhaps we’re a real-time case study of your future air quality...?*****
- Oxidation chemistry links to secondary aerosol formation
- MAX-DOAS as a useful tool for this kind of work
MAX-DOAS = Multi-axis differential optical absorption spectroscopy

- Passive solar spectroscopy technique
- Trace gas information in spectra of different elevation angles → Vertically resolved information
- Can measure NO$_2$, HONO, HCHO, glyoxal, halogen oxides, O$_3$
- Ideal for long term measurement campaigns, bottom-up satellite validation
Melbourne and Lauder

UK Atmospheric Science
Conference 2019
Case study 1: Lauder, New Zealand

- Background NDACC site in Central Otago, South Island
- Operated by NIWA

- Expected atmospheric chemistry: low aerosol optical depth, low NOx, possibly bVOCs

- MAX-DOAS measurements ongoing since mid 2016

- Validation possibilities: aerosol optical depth and HCHO column
Case study 1: Lauder, New Zealand

Retrieved surface vmr
0.45 – 0.60 ppb

Retrieved surface vmr
0.20 – 0.40 ppb

HCHO/NO₂ ratio (VCD/VCD)
> 2 = NOₓ limited O₃ production regime
< 1 = VOC limited O₃ production regime
Case study 2: Broadmeadows, Australia

- Operated by Aus BoM, Broadmeadows, northern suburb of Melbourne
- Next to major arterial motorways – expected high NOx
- Also at an urban/rural interface for transported emissions, e.g. bVOCs
- MAX-DOAS measurements ongoing since Dec 2016

My respects to the Wurundjeri traditional owners
Case study 2: Broadmeadows

Directional distribution: NO$_2$

- Seasonal variation evident
- Strongest NO$_2$ at low wind speed indicates local production
- Consistent with adjacent road traffic
Case study 2: Broadmeadows

Autumn

Winter

Spring

Summer

HCHO VCD (molec.cm$^{-2}$)

Mean

2×10^{15}

4×10^{15}

6×10^{15}

8×10^{15}

1×10^{16}

Strong seasonal variation

Clear directional trend, consistent with $bVOC$ emissions from rural areas

Potentially temperature dependent $bVOC$ emissions, biomass burning

Image sourced from Google Maps
Controls on oxidation chemistry: O\textsubscript{3} production regime

\[R = \frac{\text{HCHO}_{\text{vcd}}}{\text{NO}_2_{\text{vcd}}} \]

- Low R means VOC-limited O\textsubscript{3} production rate, dominated by low wind speeds from the urban sector
- High R means NO\textsubscript{x}-limited conditions, dominated by strong winds from the rural sector
- Discernible influence of rural (bVOC) airmasses on the local atmospheric oxidation chemistry
Case study 2: Broadmeadows – Example vertical profiles

HCHO

12/12/2017

13/12/2017

0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000
0.000

0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000
0.000

Trace gas mixing ratio (ppmv)

12/12 = Warm but calm conditions

13/12 = Hot, strong north wind
Controls on oxidation chemistry 2

Controls on oxidation chemistry: OH radical production

- $O_3 + h\nu \rightarrow O(^1D) + O_2$
 $O(^1D) + H_2O \rightarrow 2 OH$

- $\text{HONO} + h\nu \rightarrow 2 \text{OH}$

- $\text{HCHO} + h\nu \rightarrow H + \text{HCO}$
 $H + O_2 \rightarrow \text{HO}_2$
 $\text{HCO} + O_2 \rightarrow \text{HO}_2 + \text{CO}$
 $\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2$

$P_{OH}(O_3) = 2 \times f \times J(O_1D) \times [O_3]$

$P_{OH}(\text{HONO}) = J(\text{HONO}) \times [\text{HONO}]$

$P_{OH}(\text{HCHO}) = 2 \times J(\text{HCHO}) \times [\text{HCHO}]$
Controls on oxidation chemistry:

- Given strong northerly wind conditions, photolysis of HCHO can dominate the local OH radical production.
Tying it all together: trop. O$_3$ retrievals

- Tropospheric O$_3$ retrieval using MAX-DOAS is complicated because of stratospheric ozone
- Following method of Wang et al., 2018:
 \[
 \text{SCD(O}_3\text{ trop)} = \text{SCD(O}_3\text{ total, measured)} - \text{SCD(O}_3\text{ strat, modelled)}
 \]

- First attempts at retrieving trop. O$_3$ profiles look plausible:
Summary

• Nearly three years of MAX-DOAS measurements presented from Australia and NZ
 → Vertical, spatial and temporal analysis of NO₂, HCHO
 → Greater understanding of competing urban/rural influences on tropospheric oxidation capacity
 → Preliminary, promising tropospheric ozone retrievals

• Ongoing work
 → Further work on MAX-DOAS retrievals: O₃ and glyoxal
 → Using these results in modelling studies – e.g. calculating absolute OH concentrations, identifying HCHO source/s
 → Using these results in satellite validation
Thanks for listening

rgryan@student.unimelb.edu.au
rsquared_aus

Aussies are alright, really ;)
Please come and say g’day!
Case study 1: Lauder, New Zealand

Timeseries HCHO comparison: MAX-DOAS VCD and FTIR VCD
For MAX-DOAS data within 10 min of FTIR data

y = 0.760x + 1.22e14

Pearson’s r = 0.74

The 0.95−confidence bounds are calculated with the bootstrap(quantile) method.

FTIR

MAX-DOAS