Isoprene measurements in an oak-dominated forest during the 2018 heatwave in the UK

V. Ferracci¹, C.G. Bolas², K. Jaars³, F. Otu-Larbi³, T. King³, J. Beale¹, T. W. Waine¹, R.L. Jones², K. Ashworth³, N.R.P. Harris¹ ¹ Centre for Environmental and Agricultural Informatics, Cranfield University ² Centre for Atmospheric Science, Department of Chemistry, University of Cambridge ³ Lancaster Environment Centre, Lancaster University

NCAS-R Met Soc Atmospheric Science Conference, Birmingham 3rd July 2019

Synopsis

- Introduction: isoprene drivers, models, challenges
- The iDirac: instrument overview
- Isoprene during a heatwave: the WIsDOM campaign
- Preliminary results from WIsDOM
- Conclusions and future work

Isoprene in the atmosphere

- Isoprene (C₅H₈) is the largest biogenic emissions on the planet
- Estimated 300-700 TgC year⁻¹ (*cf.* ~500 TgC year from CH₄)
- Dialkene, prone to ozonolysis as well as OH and NO₃ oxidation
- Complex oxidation chemistry, source of SOA
- Emissions mainly driven by incoming solar radiation (photosynthetically active radiation, PAR) and temperature

Current understanding and models

- Current emission estimates for isoprene vary within a factor of 2-3
- Emissions impacted by global change (increasing *T*, [CO₂], land use change), and extreme weather events (heatwaves, droughts) that will become more frequent in the near future
- Heatwaves and droughts: poorly represented by models

Cranfield University

Challenges in isoprene monitoring and modelling

- Measurements needed to validate our understanding of emissions in a changing environment
- Existing instrumentation requires scientific infrastructure, unsuitable for long deployments in challenging environments (often under-sampled)
- 'Long-term' continuous measurements are few and far apart

Aims of WIsDOM campaign:

- Profile isoprene concentrations in a temperate forest canopy over a full growth season
- Characterise isoprene transport across the canopy to inform canopy-atmosphere exchange
- How are isoprene emissions affected by leaf development, changes in temperature and soil moisture? Heatwave/drought?

The iDirac: instrument overview

https://doi.org/10.5194/amt-2019-219 Preprint. Discussion started: 1 July 2019 © Author(s) 2019. CC BY 4.0 License.

EGU

ograph with

run

iDirac: a field-portable instrument for long-term autonomous measurements of isoprene and selected VOCs

Conor G. Bolas¹, Valerio Ferracci², Andrew D. Robinson³, Mohamed I. Mead², Mohd Shahrul Mohd Nadzir,⁴ John A. Pyle^{1,5}, Roderic L. Jones¹ and Neil R.P. Harris^{1,2}

⁵ ¹Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK ²Centre for Environmental and Agricultural Informatics, Cranfield University, College Road, Cranfield, MK43 0AL, UK ³Schlumberger Cambridge Research, Madingley Rd, Cambridge, CB3 0EL, UK ⁴School of Environmental and Natural Resource Sciences, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia ⁵National Centre for Atmospheric Science, NCAS, UK

10 Correspondence to: Neil R.P. Harris (neil.harris@cranfield.ac.uk)

Bolas et al., Atm. Meas. Tech. Discuss., 2019 Visakorpi et al., New Phytologist, 2018 •Limit of detection of ~40 ppt (3:1 S/N)

• Precision ~5-10%

•3-15 min time resolution

The i-Dirac: operation

The i-Dirac: calibration

- One gas standard needed
- Routinely calibrated with different volumes of cal gas
- Allows to test detector linearity

Good stability over weeks

Wytham Woods – Site overview

- Wytham Woods (Oxfordshire) is a mixed temperate woodland
- Quercus robur (common oak) dominant isoprene emitter
- Canopy walkway allows sampling at different heights
- Run on solar power for 5+ months

WIsDOM measurement set-up

- <u>Wytham</u> <u>Isoprene</u> i<u>D</u>irac <u>Oak</u> tree <u>Measurements</u> (WIsDOM)
- Isoprene, T and PAR measured at 4 heights
- Nearby *T*, PAR, wind and soil moisture from met station (400 m from walkway) all summer
- Periodic leaf gas exchange, foliage VOC emissions and whole air samples
- Satellite retrievals of normalised difference vegetation index (NDVI)
- Monitor for a complete growing season (May Nov 2018)

Results: isoprene time series

- (almost) uninterrupted time series from May to October 2018 (5+ months)
- Peak values ~8 ppb
 - cf. tropical forests!
- Vertical gradient

Isoprene during the 'Great Heatwave of 2018' (1)

- Heatwave (22 Jun-08 Aug 2018): one of the hottest summers on record, combined with prolonged drought
- Mean temperature during the heatwave 4°C higher than before or after; 3°C higher than the 1992-2017 mean over the same period
- Soil moisture decreased significantly through heatwave/drought
- NDVI shows drought stress increased through heatwave/drought

Isoprene during the 'Great Heatwave of 2018' (2)

Cranfield University

- Diurnal mean isoprene during heatwave up to 4-5 times greater than non-heatwave
- PAR goes with season
- Only temperature driven?

Isoprene during the 'Great Heatwave of 2018' (3)

• Expected response of isoprene to temperature seen in early part of summer and after the heatwave

Cranfield University

- Unexpected enhancement in response to temperature during the heatwave
- Pre-and post-heatwave response curves overlap

Isoprene during the 'Great Heatwave of 2018' (4)

- Normalising isoprene concentrations (with respect to *T* and PAR) shows a clear correlation between soil moisture and enhanced isoprene during drought stress
- No isoprene shutdown observed following drought stress – soil moisture remained above wilting point (~0.15 m³m⁻³)
- Tightly constrained canopy models show isoprene flux into boundary layer is ~4 times higher during heatwave

FORCAsT modelling

18071

20180717

20180731

C₅H₈ [ppb]

C₅H₈ [ppb]

OBS

20180703

Otu-Larbi et al., in preparation

С

С

20180828

20180814

BASE mode

180911

20180911

• FORest Canopy Atmosphere Transfer (FORCAsT): 1-D model of biosphere-atmosphere exchange simulating biogenic emissions, chemical production and loss, vertical mixing, advection and deposition within and above the canopy

Lancaster University

Cranfield University

- Current isoprene emissions algorithms reproduce isoprene concentrations before and after the heatwave BUT not during the heatwave-drought period
- Model outputs were significantly improved when stress-induced emissions were included within the emissions algorithms

- iDirac ran autonomously in a logistically difficult environment
- 5 months of uninterrupted isoprene concentration measurements across the canopy before, during and after heatwave
- Response of isoprene to temperature enhanced during heatwave apparently as a result of drought stress
- Our data in combination with canopy models provide an alternative method to derive forest VOC fluxes into the lower atmosphere
- Exceptionally hot summer, expected to be typical around 2050
- Need to establish impact of greater isoprene emissions on tropospheric oxidising capacity, ozone and SOA production in future climate scenarios
- Further development of iDirac: DMS, ethylene, monoterpenes
- WIsDOM 2 currently underway...

Acknowledgements

THANK YOU!

ANY QUESTIONS?

The i-Dirac: trap performance

- Breakthrough volume: 250 mL
- Max sampled volume = 200 mL
 - \rightarrow LOD ~ 40 ppt

- Response factor decreases with time
- Attributed to trap 'poisoning'
- Replace trap periodically

The i-Dirac: co-elution tests

- Tested for co-elution with other C4-C5 alkanes and alkenes
- Isoprene peak well-separated
- Peak fitting routine can account for additional peaks in the chromatograms
- Additional peaks seen in sample runs provide additional info once identified
- Work in progress

The i-Dirac: design requirements (2)

- Robust (able to operate in harsh
 Pelicase (rugged and durable) environments)
 - ant and elephant-proof
 - Tropical forest (high T, RH)
- Lightweight (carry to off-road
 10 kg without power or gas location)
- Low power (needs to run off-grid) 12 W (4 W or less on standby)
- Minimal reliance on cylinders of 1 full N₂ cylinder \rightarrow ~2 months carrier gas
- Autonomous
- Remote data collection
- Easy to use, suitable for nonspecialists

- Arduino control/Raspberry Pi interface
- Ad-hoc wifi network
- Potentially

$$I = I_S C_L C_T$$

$$C_L = \frac{|\alpha C_{L1} L|}{\sqrt{1 + \alpha^2 L^2}}$$

$$C_T = \frac{exp \frac{C_{T1} (T - T_S)}{RT_S T}}{1 + exp \frac{C_{T2} (T - T_M)}{RT_S T}}$$

Equation 3

Equation 4

Equation 5

BASE+SW: Isoprene activity factor, ySWC iso was calculated from soil water content as follows:

(SWC iso = 1) (SWC iso = $[(\theta - \theta w)/(\theta c - \theta w)]^q$	for $\theta \geq \theta_{c}$	(7a)
	for $\theta_{W} < \theta < \theta_{C}$	(7b)
$\gamma SWC iso = 0$	for $\theta < \theta_{w}$	(7c)

where θ (m³ m⁻³) is the volumetric soil moisture, θ_w (0.15 m³m⁻³) is the wilting point, θ_c (0.22 m³m⁻³) is a critical soil moisture content above which water stress does not affect isoprene emissions and q (0.40) is a site-specific empirical factor describing the non-linearity of the effects of soil water stress on tree physiological processes.

The i-Dirac - Conclusions & Future work

- Developed a portable GC-PID for long-term isoprene measurements
- Data shows long-term linearity and stability
- Field measurements capture different isoprene abundances in different forest environments
- Successful deployment for 5+ months with minimal maintenance

Future work

- New target species (methacrolein, MVK, DMS, ethylene, etc.)
- Further develop automated analysis software for real-time analysis of chromatograms
- Model emissions from field data and estimate forest fluxes

Measurement set-up

- Isoprene measured at 4 heights inside, below and above the canopy
- Range of other parameters (*T*, RH, PAR, [CO₂]) at each inlet
- 3D anemometer at the top of the canopy
- Long-term, low-power, unmanned deployment unsuitable for traditional instrumentation
- Monitor for a complete growing season (May 2018 ongoing)

Results: isoprene time series

 (almost) uninterrupted time series from May 2018

Cranfield University

- Peak values ~7 ppb cf. Borneo!
- Vertical gradient

Results: isoprene daily averages and T correlation

- Peak below canopy lags ~1 h behind top
 - → advected from canopy

- Isoprene vs T at top of canopy
- Hourly average values (day *and* night)
- Increased temperature → increased isoprene (non-linear, exponential)
- 2018 heatwave: shall we talk about the weather?

Isoprene during the 'Great Heatwave of 2018' (1)

Isoprene during the 'Great Heatwave of 2018' (2)

- Mean isoprene diurnal peak 5 times higher during the heatwave
- Monthly average 2-3 times higher during heatwave
- Effects of local air quality? O₃ production? Oxidising capacity? → Modelling needed
- Preliminary results; further rigorous analysis needed

Ancillary measurements

- Temperature (4 heights)
- Relative Humidity (4 heights)
- Wind direction and speed (top of canopy)

Modelling the Wytham data

Cambridge box-model (Rod Jones)

- Uses light and temperature data to estimate isoprene emission
- [OH] estimated from SZA and assumptions of initial concentration
- Under development

FORCAsT (University of Lancaster)

- 1-D single column model predicting chemical species and aerosols from soil to above canopy
- Energy balance and radiative transfer within the canopy
- Sophisticated emission factors and chemical mechanisms
- Characterises canopy-atmosphere exchange

Palm oil plantation in Peninsular Malaysia (1)

- Malaysia Palm Oil Board (MPOB), Pekan site
- Dec 2016 Jan 2017

Palm oil plantation in Peninsular Malaysia (2)

- Daytime peak: maximum ~30 ppb
- Daytime peak: variable, rain affected
- Night-time minimum: < 100 ppt
- cf. secondary forest in Borneo

Secondary forest in Malaysian Borneo

- Daytime peak: maximum <10 ppb
- Daytime peak: variable, rain affected
- Nighttime minimum: < 100 ppt