Machine Learning in Earth System Science: An overview of meteorological normalisation

Stuart K. Grange^{1,2,*}

¹Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland ²Wolfson Atmospheric Chemistry Laboratories, Chemistry, University of York * <u>stuart.grange@york.ac.uk</u>

Atmospheric Science Conference 2019, Birmingham, United Kingdom (2019-07-03)

Introduction

- Meteorological normalisation is a framework which enables a data user to control for changes in meteorology/weather over time in an air quality time series
- The technique uses the random forest ensemble machine learning algorithm^[1]
- An R package, rmweather has been accepted by CRAN which contains the tool set required for others to conduct this analysis^[2]
- The random forest models for Swiss PM₁₀ suggested interesting atmospheric processes^[3]
- The technique is useful for intervention exploration^[4]

Figure 1. Conceptual diagram of the meteorological normalisation procedure.

Figure 2. Meteorologically normalised trends for Swiss PM₁₀.

Figure 3. Meteorologically normalised trends of $\rm NO_2$ and $\rm NO_x$ at London Marylebone Road between 1997 and 2016.

Final notes

- For examples and full discussion of this work, see references [3, 4]
- A poster is available for viewing at this conference
- A workshop is being held at this conference so the application of the technique and code development can occur with support

References

[1] Breiman, L. (2001). Random forests. Machine Learning, 45, 5--32. https://link.springer.com/article/10.1023/A:1010933404324

[2] Grange, S. K. **rmweather**: Tools to Conduct Meteorological Normalisation on Air Quality Data. R package. <u>https://github.com/skgrange/rmweather</u>

[3] Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and Hueglin, C. (2018). Random forest meteorological normalisation models for Swiss PM₁₀ trend analysis*. Atmospheric Chemistry and Physics* 18.9, 6223-6239. <u>https://doi.org/10.5194/acp-18-6223-2018</u>

[4] Grange, S. K., & Carslaw, D. C. (2019). Using meteorological normalisation to detect interventions in air quality time series. Science of the Total Environment, 653 , 578--588.

https://doi.org/10.1016/j.scitotenv.2018.10.344

The online location of this presentation