

Working towards a coupled interactive fire-atmospheric-composition model

J.C Teixeira, G. Folberth, F. O'Connor, A. Voulgarakis, N. Unger

Atmospheric Science Conference 02/07/2019

www.metoffice.gov.uk

Fire in the Earth System

Impacts of fire on the atmosphere, land surface, ice surfaces and the ocean (Ward et al., 2012)

Fire carbonaceous aerosol emissions (Hamilton et al. 2018)

Objectives

→ Development and application of a coupled vegetation-fire-composition-climate Earth system model

- → Quantification of the impacts of fire variability on atmospheric composition-climate
 - Radiative forcing of climate
 - Fire-composition-climate feedback

S. Mangeon et al. (2016): INFERNO - a fire and emissions scheme

Model Setup

	Control	Experiment
Model setup basis	UKESM1-AMIP	
INFERNO	Diagnostic	Interactive
Period	1980-2010	
ignitions	Prescribed lightning (2010) Population density (2010)	
Biomass emissions	UKESM1 CMIP6	INFERNO (CO, NO _x , SO ₂ , BC, OC)

Observations dataset – GFED 4.1s burned area (including small fires) and emissions of burnt Carbon – from 1997 to 2010

Giglio, L. et al. (2013), 'Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (gfed4)'

Mean Annual Burnt Area Fraction (% year¹)

Underestimation over Africa

25

Burnt Area fraction Monthly Climatology (fraction month⁻¹)

Mean Annual Carbon emission (kg m⁻² year⁻¹)

GFED 4.1s (1997-2010)

UKESM1-AMIP INFERNO Interactive (1980-2010)

- Agreement with observations on spatial patterns
- Overestimation over N. America, S. America, Africa and Maritime Continent

Emitted Carbon Monthly Climatology (kg m⁻² year⁻¹)

Northern Hemisphere Africa

Southern Hemisphere Africa

What's wrong?

Shrubs Ever. Shrubs Dec. -C4 Pasture C4 Crop C4 Grass C3 Pasture C3 Crop C3 Grass Needle Leaf Ever. Needle Leaf Dec. Broad Leaf Ever. Temp. Broad Leaf Ever. Trop. Broad Leaf Dec.

Atmospheric composition - Troposphere column

Mass mixing ratio

UKESM1-AMIP INFERNO Interactive (1980-2010)

$CO (mg kg^{-1})$

NO_x (mg kg⁻¹)

O3 ($\mu g k g^{-1}$)

OH (mg kg⁻¹)

Difference

(interactive - diagnostic INFERNO)

Atmospheric composition - Total column

BC (*mg kg*⁻¹)

Mass mixing ratio

UKESM1-AMIP INFERNO Interactive (1980-2010)

OC (*mg kg*⁻¹)

Difference (interactive – diagnostic INFERNO)

Impact on clouds and precipitation

Total Cloud

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Precipitation

Impact on temperature and soil moisture

1.5 m Temperature

Unfrozen soil moisture

Radiation Balance at TOA (W m⁻²)

UKESM1-AMIP INFERNO Diagnostic (1980-2010)

UKESM1-AMIP INFERNO Interactive (1980-2010)

ERF – due to differences in the two experiments

Summary

- Implementation of the online coupling to the atmospheric model
 - Allowing for a fire-atmosphere-composition two way interaction
 - Fires change Earth's radiative balance which feedback to the atmospheric controls of fires
- Biases in underlying vegetation are the main reason for biases in fire emissions
 - Model gives the wrong for the right reason
 - Implications for atmospheric and climate feeding back to fire

Next Steps

- Understand how to improve/constraint the land surface properties
- Evaluation of the impact fires in composition
- Response of fire and compositions in fire
- Climate-fire feedbacks in future climates