

Utilising GPS mapping products to increase the spatial and temporal resolution of traffic data

Helen Pearce

Dr. Zhaoya Gong Dr. Xiaoming Cai Prof. Bill Bloss

Overall PhD aim: to improve the integration of transport, emissions, and air quality models in order to produce a more realistic estimation of risk (human exposure to pollutants)

Context: Air Quality

Why is air pollution an issue?

- □ 40,000 premature deaths and costs £20 billion / year (RCP, 2016)
- Economic burden (health care, declining productivity, environmental degradation) (OECD, 2016)
- Inside car concentrations can be significantly higher than road-side concentrations (Xu et al., 2016)

Context: Birmingham

Context: Birmingham Air Quality

- National Atmospheric Emissions Inventory 2016 data
- NO2 emissions from road transport

http://naei.beis.gov.uk/emissionsapp/

Context: Clean Air Zone

January 2020 \rightarrow July 2020

Current state of traffic data

Department for Transport count point locations

Current state of traffic data

Use of mapping products in isolation

URL Example

https: //{"response": {"metaInfo": {"timestamp": "2019-06-18T13: 31: 49Z", "mapVersion": "8. 30. 97. 151", "modul eVersion": "7. 2. 201923-3839", "interfaceVersion": "2. 6. 58", "availableMapVersion": ["8. 30. 97. 151"]}, "route": [{"waypoint": [{"linkId": "-

26344279", "mappedPosition": {"latitude": 52.4679071, "longitude": -1.9038641}, "originalPosition": {"latitude": 52.4678768, "longitude": -

1. 9038784}, "type": "stop0ver", "spot": 0. 377551, "si de0fStreet": "right", "mappedRoadName": "Lee Bank Middl eway", "label": "Lee Bank

Middleway", "shapeIndex": 0, "source": "user"}, {"linkId": "-1000175855", "mappedPosition": {"latitude": 52.4677612, "longitude": -

1. 9029082}, "original Position": {"latitude": 52. 4677232, "longitude": -

1. 9029219}, "type": "stop0ver", "spot": 0. 1142857, "si de0fStreet": "right", "mappedRoadName": "Lee Bank Mi ddl eway", "label": "Lee Bank Mi ddl eway", "shapeIndex": 2, "source": "user"}], "mode": {"type": "fastest", "transportModes": ["car"], "trafficMode": "enabled", "feature": []}, " leg": [{"start": {"linkId": "-26344279", "mappedPosition": {"latitude": 52. 4679071, "longitude": -

1. 9038641}, "original Position": {"latitude": 52. 4678768, "longitude": -

1. 9038784}, "type": "stop0ver", "spot": 0. 377551, "sideOfStreet": "right", "mappedRoadName": "Lee Bank Middleway", "label": "Lee Bank Middleway", "shapeIndex": 0, "source": "user"}, "end": {"linkId": "-1000175855", "mappedPosition": {"latitude": 52. 4677612, "longitude": -1. 9029082}, "original Position": {"latitude": 52. 4677232, "longitude": -

1. 9029219}, "type": "stop0ver", "spot": 0. 1142857 "sideOfStreet": "right", "mappedRoadName": "Lee Bank Middleway", "label": "Lee Bank Middleway", "shapeIndex": 2, "source": "user"}, "length": 75, "travelTime": 7, "maneuver": [{"position": {"latitude": 52. 4679071, "longitude": -1. 9038641}, "instruction": "Take ramp onto Lee Bank Middleway. Go for 71

m. ", "travelTime": 7, "length": 71, "id": "M1", "_type": "PrivateTransportManeuverType"}, {"position": {"latitude": 52. 4677612, "lo
ngitude": -1. 9029082}, "instruction": "Arrive at Lee Bank Middleway. Your destination is on the
right. ", "travelTime": 0, "length": 4, "id": "M2", "_type": "PrivateTransportManeuverType"}]}], "summary": {"distance": 75, "trafficTime": 7, "base
Time": 6, "flags": ["builtUpArea"], "text": "The trip takes 75 m and less than 1
min. ", "travelTime": 7, "_type": "RouteSummaryType"}}], "language": "en-us"}}

Comparison of mapping products

Application of mapping products over Birmingham area: workflow

6: Use emissions factors and activity from nearest count point location to calculate total emissions for link

Total emission (g/h) = Emission Factor (g) * Activity (vehicles/hour)

2019-06-21 at 9:00

And repeat...

Future Work

- Explore additional step of how emissions interact with environment (dispersion and chemical reactions)
- □ Sensitivity tests:
 - what if 100% of vehicle fleet was petrol?
 - what if all cars could travel at speed limit?
 - what impact could the CAZ have on the ring road?
- □ Improve traffic activity data Newcastle Urban Observatory

Thank You & Questions

Scan the above with your camera to view my webpage

1: Clip OS roads data for Birmingham area and process DfT manual count point data

- OS open roads available for all of UK (April 2019)
- 'Zoom in' to area of interest
- Background work completed to ensure most recent year of data for each manual traffic count point was used

2: Remove minor roads, fix geographic projection, assign link to nearest count point

- Minor roads removed due to usage limits of API (HERE = 250,000)per month)
- □ Assigned each link to its nearest count point ID

 A Road B Road

— Motorway

class

4: Calculate speed of travel based on distance/time relationship

Known link length and journey time, therefore: speed = distance/time

5: Generate speed-related emissions factors for a mixed vehicle fleet

Traffic fleet composition from nearest count point gives details on: motorbikes, passenger cars, buses, LGVs and HGVs

