

Current challenges for the assimilation of high resolution data

J.A. Waller and all colleagues and collaborators

Motivation

To forecast at the convective scale we need to assimilate observations at the appropriate spatial and temporal resolution.

There are a wide range of observations that are not fully exploited in convective scale data assimilation:

- Only 5% of available observations are currently assimilated due to large or unknown observation uncertainties
- Potential useful information at very high resolution may be extracted from unconventional sources.

Observation errors

Observation errors arise from four main sources:

Instrument error

Representativity error

Observation pre-processing

Observation operator error

The inability to account for spatially correlated observation errors often results in superobbing and spatial thing of the observations.

Optimal assimilation

To use more of the available data we must understand the observation error statistics and correctly account for them in data assimilation.

AHI

0.8

Optimal assimilation

Observations also not assimilated due to:

- Inability to account for temporal resolution
- Large errors due to highly approximate observation operators
- Non-Gaussianity of observation errors and observation departures

One area where progress has been made if the assimilation of all-sky satellite radiances (Geer et al. 2017). But still only a small percentage of observations are used.

Figure from Geer et al. 2019

Efficient assimilation

Using correlated inter-channel errors :

- Leads to an increase in the analysis accuracy.
- Leads to an increase in the NWP skill score.
- Makes more use of the available data.

- However, it can lead to problems with convergence of the data assimilation system
- Shown for different instruments and data assimilation systems e.g. Weston et al. 2014, Bormann et al 2016, Campbell et al 2017.

04/09/2019

Novel observations

Novel observations have potential to provide data at very high temporal and spatial resolutions not currently captured by standard meteorological observations.

Mode S EHS successful example, but novel observations have many potential issues:

- Quality assessment required,
- Lack of metadata
- Privacy issues,

University of

Reading Met Office

- Data ownership,
- Data streaming and storage,

NER

• And many more ...

Figure from EUMETNET Aircraft derived data feasibility study

Challenges

How can we accurately assimilate more of the currently available observations?

- Alan Geer: All-sky assimilation for initial conditions and model improvements
- David Simonin: A pragmatic strategy for implementing spatially correlated observation errors in an operational system: an application to Doppler radial winds

How can we efficiently assimilate high resolution observations?

Jemima Tabeart: Using reconditioning methods to reduce the cost of using correlated observation error information: theory and practice

Can novel observations provide benefit in convective scale data assimilation?

Kasper Stener Hintz: Screening, correction and assimilation of smartphone pressure observations in the HARMONIE NWP system using 3D-Var.

References

- Bormann, N., Bonavita, M., Dragani, R., Eresmaa, R., Matricardi, M. and McNally, A. (2016), Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Q.J.R. Meteorol. Soc., 142: 1767-1780. doi:10.1002/qj.2774
- Campbell, W.F., E.A. Satterfield, B. Ruston, and N.L. Baker, (2017): Accounting for Correlated Observation Error in a Dual-Formulation 4D Variational Data Assimilation System. *Mon. Wea. Rev.*, 145, 1019–1032, https://doi.org/10.1175/MWR-D-16-0240.1
- Cordoba, M., Dance, S. L., Kelly, G. A., Nichols, N. K. and Waller, J. A. (2017) Diagnosing atmospheric motion vector observation errors for an operational high resolution data assimilation system. Quarterly Journal of the Royal Meteorological Society, 143 (702). pp. 333-341. ISSN 1477-870X doi: 10.1002/qj.2925
- Geer, AJ, Lonitz, K, Weston, P, et al. All-sky satellite data assimilation at operational weather forecasting centres. *Q J R Meteorol Soc*. 2018; 144: 1191– 1217. https://doi.org/10.1002/qj.3202
- Geer, A. J., Migliorini, S., and Matricardi, M.: All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-9, in review, 2019.
- Gustafsson, N, Janjić, T, Schraff, C, et al. Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. *Q J R Meteorol Soc*. 2018; 144: 1218–1256. https://doi.org/10.1002/qj.3179
- Okamoto, K, Sawada, Y, Kunii, M. Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. *Q J R Meteorol Soc*. 2019; 145: 745–766. https://doi.org/10.1002/qj.3463
- Waller, J. A., Simonin, D., Dance, S. L., Nichols, N. K. and Ballard, S. P. (2016b) Diagnosing observation error correlations for Doppler radar radial winds in the Met Office UKV model using observation-minus-background and observation-minus-analysis statistics. Monthly Weather Review, 144 (10). pp. 3533-3551. ISSN 0027-0644 doi: 10.1175/MWR-D-15-0340.1
- Waller, J. A., Ballard, S. P., Dance, S. L., Kelly, G., Nichols, N. K. and Simonin, D. (2016c) Diagnosing horizontal and inter-channel observation error correlations for SEVIRI observations using observation-minus-background and observation-minus-analysis statistics. Remote Sensing, 8 (7). 851. ISSN 2072-4292 doi: 10.3390/rs8070581
- Weston, P.P, Bell, W. and Eyre, J.R.. Accounting for correlated error in the assimilation of high resolution sounder data. *QJRMS*, 2014.

04/09/2019