IPCC Special Report on Climate Change and Land: Land-Climate interactions

Dr Jo House

Jo.house@bristol.ac.uk

@Drjohouse

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Key messages

- Land is at risk due to climate change, but also contributes to climate change, thus sustainable land management is critical for climate mitigation and adaptation.
 - Climate change poses risks to biodiversity and food production
 - Agriculture, forestry and land use contribute around a third of greenhouse gas emissions
 - Mitigation is limited by the need to feed people and by available land

Climate impacts on land

INTERGOVERNMENTAL PANEL ON Climate change

Model projections of climate change from 1986-2005 to 2081-2100

Changes are not equal everywhere

Graphs show annual average change, not extremes.

IPCC 5th Assessment Report, Synthesis Report fig 2.2.

NTERGOVERNMENTAL PANEL ON CLIMOTE

RCP2.6 = 0.9 to 2.3^c RCP8.5 = 3.2 to 5.4^c Scenario:

0.5

1.5

Change in average precipitation (1986-2005 to 2081-2100)

0.2

0.1

0

0.3

0.4

0.5

-1.5 -1 -0.5

-2

-0.4

(b)

(c)

Temperature

Precipitation

Sea level

Univers

-0.2 -0.1

0.6

0.7

0.8

20

30

40

50

39

%

m

Model projections of climate change from 1986-2005 to 2081-2100

Changes are not equal everywhere

Graphs show annual average change, not extremes.

IPCC 5th Assessment Report, Synthesis Report fig 2.2.

ENTAL PANEL ON CIMOTE

Scenario: RCP2.6 = 0.9 to 2.3'C RCP8.5 = 3.2 to 5.4'C

Temperature °C. -1.5 -0.5-2 Change in average precipitation (1986 2005 to 2081 2100 39 extreme events CO_2 fertilisation Precipi distribution of pests and diseases % -30 -20 -10 10 20 30 40 50 -50 (c) Change in average sea level (1986-2005 to 2081-2100) Sea level Univers 0.6 0.7 -0.2 -0.1 0.2 0.3 0.4 0.5 0.8 -0.4 0

Biome shifts and productivity changes during the 20th Century

University of

- Anthropogenic warming has resulted in shifts of climate zones, primarily as an increase in dry climates and decrease of polar climates (high confidence).
- Ongoing warming is projected to result in new, hot climates in tropical regions and to shift climate zones poleward in the mid- to high latitudes and upward in regions of higher elevation (high confidence)

WMO

Locations of Observed Biome Shifts during the 20th Century

The color of each semicircle indicates the retracting biome (top for North America, Europe, Asia; bottom for Africa and New Zealand) and the expanding biome (bottom for North America, Europe, Asia; top for Africa and New Zealand).

Risks to humans and ecosystems from climate change

Risks to humans and ecosystems from climate change

Natural disturbances and extremes, fires, floods, pests and diseases;

University of

BBC	Joanna House	.	News	Sport	Weather	iPlayer
NEWS						
Home U	World Business	Election 2	019 Te	ech Sc	cience He	ealth Fa
Scotland Scotland Politics Scotland Business Edinburgh, Fife & East Glas						

Huge Flow Country wildfire 'doubled Scotland's emissions'

- Increase in frequency and intensity in some places, reduction in others
- fires burning in tropical forests where unexpected

Land impacts on climate

INTERGOVERNMENTAL PANEL ON Climate change

Extent of land use and management, 2015

University of

1 % infrastructure 12% cropland 37% pasture 22% managed forests 16% minimal human use 12% barren, etc.

WMO

ENTAL PANEL ON CLIMATE C

NTERGOVERNM

IPCC SRCCL SPM fig1

Changing trends in intensity of agriculture from 1961 to 2017 has supported increased production, but also caused greenhouse gas emissions

⁄ University of

<u>199</u>

WMO

Inorganic fertiliser use 800% increase – emits nitrous oxide

Increase in cereal yields around 200%

Increase in irrigation water volume

Total number of ruminant livestock

IPCC SRCCL SPM fig1

NTERGOVERNMENTAL PANEL ON Climate chan

Change in anthropogenic greenhouse gas emissions 1961-2016

Gt CO₂eq/yr

Agriculture, Forestry and Other Land Use (AFOLU) activities accounted for 23% of total net anthropogenic emissions of GHG during 2007-2016

- 13% of carbon dioxide CO₂ from deforestation, afforestation, and other land cover change
- 2. 44% of methane CH₄ from agriculture
- 3. 82% of nitrous oxide N₂O from agriculture

Including pre- and post-production activities in the global food: 21-37% of total net anthropogenic GHG emissions

IPCC SRCCL SPM fig1

Natural land sink of CO₂

はど University of の「「「BRISTOL

The natural response of land to humaninduced environmental change caused a net sink of around 11.2 GtCO₂ yr-1 during 2007-2016 (equivalent to 29% of total CO₂ emissions) *(medium confidence)*

The persistence of the sink is uncertain due to climate change (*high confidence*).

Borneo, Central Kalimantan photo Jo House

Carbon dioxide net emissions and removals from land use, land use change and forestry

Needs to be reconciled for the Paris Agreement Global Stocktake 2023

INTERGOVERNMENTAL PANEL ON CLIMATE CHANE

National greenhouse gas inventories (yellow) show much smaller net emissions than global models (red and blue)

They assume some of the sink due to environmental change to be anthropogenic if it occurs on "managed lands"

Average agricultural methane (CH₄) emissions estimates from 1990 to 2016

🗟 🟒 University of

WMO

IDCC

IPCC SRCCL, fig 2.9

Average agricultural nitrous oxide (N₂O) emissions estimates from 1990 to 2016

INTERGOVERNMENTAL PANEL ON CLIMATE CHANEE

WMO

Responding: mitigation and adaptation

INTERGOVERNMENTAL PANEL ON CLIMATE Change

How do we get to 1.5 degrees?

WMO

NTERGOVERNMENTAL PANEL ON Climate change

Land use Change in 1.5 and 2 'C consistent pathways

🗟 🕜 University of

WMO

INTERGOVERNMENTAL PANEL ON Climate

6

Ę

There are multiple different pathways that can limit warming

Less bioenergy would require more afforestation to meet targets

- Bioenergy area change 0-750 Mha (roughly size od India)
- Forest area -200 to 7200 Mha change

IPCC SR1.5 Fig 2.11

Mitigation in the land sector

IPCC SRCCL fig 2.24, from Roe et al Nature climate change 2019

reduced emissions from agriculture

reduced emissions from forests and other ecosystems

carbon dioxide removal

Demand management

Mitigation potential (GtCO2-eq yr-1)

10

INTERGOVERNMENTAL PANEL ON CLIMATE CHANE

Increase cleaner cookstoves

0.05-0.36

Reduce emissions from Forests and other Ecosystems

Reduce forest degradation

Reduce conversion, draining, burning of peatlands

Reduce conversion of coastal wetlands (mangroves, seagrass and marshes)

Reduce conversion of savannas and natural grasslands

Carbon Dioxide Removal

Afforestation/Reforestation (A/R)

Forest management

Agroforestry

Peatland restoration

Coastal wetland restoration

Soil carbon sequestration in croplands

Soil carbon sequestration in grazing lands

Biochar application

BECCS deployment

<u>6.10</u>

DEMAND MANAGEMENT

Key messages

- Land is at risk due to climate change, but also contributes to climate change, thus sustainable land management is critical for climate mitigation and adaptation.
 - Climate change poses risks to biodiversity and food production
 - Agriculture, forestry and land use contribute around a third of greenhouse gas emissions
 - Mitigation is limited by the need to feed people and by available land

Thankyou. Jo.house@bristol.ac.uk

