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Overview:

A brief introduction to Data Assimilation

* Where has Data Assimilation been used ?
 Where Is Data Assimilation heading next ?
 Summary

* A challenge for the established literature



A brief introduction to Data Assimilation

* Models give a complete description of
the atmospheric state, but errors can >
grow rapidly in time

* Observations provide an incomplete
description of the atmospheric state, but >
do bring accurate up to date
information

« The Data Assimilation algorithm
combines these two sources of >
information to produce an optimal
(best) estimate of the atmospheric state




Data Assimilation: The model

 Models give a complete description of
the atmospheric state, but errors can >
grow rapidly in time

Coupled Earth System Simulators / Digital Twins
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radiation




Data Assimilation: The observations

» Observations provide an incomplete
description of the atmospheric state, but >
do bring accurate up to date

information

ops 20-Jun-2012 to 31-Jul-2023

Infrared WV AMV

Scatterometer
Wind lidar+Other

Infrared T



Data Assimilation: The algorithm

 The Data Assimilation algorithm
combines these two sources of >
information to produce an optimal
(best) estimate of the atmospheric state

(1) There are lots of approaches: (2) The are theoretically equivalent (3) Implementation is critical

A method of deriving the OI formula originates from the cost function. Even though h in (2) can be

° H H ( ) non-linear, here we will first approximate it by lnjleanfanon :ibout the ¥p. ) . i )
Optimal Interpolation (Ol BCEEE @ «  Application appropriate (global / regional)

then h[¥p + 03] = h[¥] + HOX [&)]

H is a matrix which represents the linearization of T about Xp. (5) is a Taylor expansion of F about

. . . Xp to first order where H is the first derivative (called the Jacobian'), . .
Variational (Var) i «  How accurate is your prior knowledge (model)

H (6)

= FEL

. Ensemble Kalman Filter (EN KF) which is a matrix notation for the elements H,, % Mcicp 1<j<m. @

Substitute (4)-(5) into (2), and rearrange

* How well constrained by observations ?
J %m‘:‘x 0% + %(i — hixgl — HOO'R (5 — hlx,] — HOD).

= DOV G 4 (0% - 5 - AUI)R(HAE - G- AL . Computer resources

J is minimized at the analysis, %,, where V,J = 0

* Local Ensemble Transform KF (LETKF)

VI [0F=0%, = B 0%, + H'R'(HOZ, — (5 — hlxgl}) = O

] Slmpllfled Extended Kalman Fllter (SEKF) L?;:B;::(?fi]‘];é;ndenvelhisgradmn:expressmn).where?:A Xy + OF,. This expression can o Human resources / SeCtOriaI Ski”

B+ HR'W)65, = H'R'G -~ hix).
. . W= G- B+ HR'HIHRG - AL, ®
. Any com b 8] at| on Of th ea bove . This equation can be written in a different way by using the following Sherman-Morrison-Woodbury
formula (see the problem sheet, Q3)
B'+HR'HBH = H'R (R + HBH"), (9)
which can be proven easily. It is straightforward to rearrange (9) to resemble the string of matrix
operators that are present in (8)

®'+HR'H'HR' = BH' (R + HBH" ' (10)
making (8) into an equivalent form

% % = BHTR + HBH")'G -~ ALaD an
(11) is the Optimal Interpolation (OI) or Best Linear Unbiased Estimator (BLUE) formula, derived
using the 'max. likelihood' (or 'min. cost) method. Since OI and Var. are equivalent when the
forward model is linear (ie when (5) holds exactly), (11) can be used to understand how Var. works.




Data Assimilation: The 4D-Var algorithm

cint t background error
ate vector covariance

| |
J(x)=(x—xs) B (x—x3)+

(y—H[x])' R™ (y—H[x])

| | |

_ observation operator
observations  gpservation* error (maps the model state to the

covariance observation space)
Quarterly Journal of the — It has a physical model at its core — the analysis is physical
Royal Meteorological Society ————
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physics
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Data Assimilation: Where has it been used ?



Data Assimilation: Where has it been used ?

* Numerical weather prediction (weather forecasting)

* Climate reanalysis



Data Assimilation: Where has it been used ?

 Numerical weather prediction (weather forecasting)



Data Assimilation: Numerical Weather Prediction




Data Assimilation: Numerical Weather Prediction

Dorian viewed from the Sentinel-3 satellite Dorian viewed from the Bahamas
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Good forecasts and excellent evacuation plans significantly mitigated storm human impact




Data Assimilation: The power of data fusion

Early identification of storm genesis...in a challenging environment

Ocean surface temperature ? _Semi-transparent
mid level humidity ? ice clouds
wind sheer ?

Sertdust

§ |opaque

': " clouds




Data Assimilation: The power of data fusion

mfrared

e N

microwave

DA systems are able to effectively
combine information from many highly
heterogenous sources...

. to build up a multi-dimensional and
multi-parameter view of the atmosphere

Visible Microwave o\d"%@éci\ab‘ Infrared

Cloud Cloud ice Cloud fraction,
particles, water cloud top
lighter X height. multiple
precip. Ice particle layers

Vertically Vertically
resolved o) o resolved
O | & particles,
Cloud 7\2 O :: partlcle
particle Cloud and Size of water
size and liguid cloud particles
" ‘




Data Assimilation: The power of data fusion

60°W 40°W

20°N

Control system with satellites
identifies storm genesis on 24t
August and provides 4 days
warning of direct strike on
Windward Islands

System with satellites denied
(for 36hrs prior to forecast)
misses the storm genesis and
provides no warning of strike on
Windward Islands




Data Assimilation: Where has it been used ?

 Climate reanalysis



Data Assimilation: Climate reanalysis

ipcc

PIANMIATE) sane) b Glngle Chases

Climate Change 2021
The Physical Science Basis

e Reanalysis is indispensable for research,
climate science and climate services.

e Most cited datasets in the scientific literature.

e ERAS has 240 citations in the IPCC AR6 WGI
report.

e Reanalysis is the backbone for Copernicus
services.

e Reanalysis provides fundamental training data
for machine learning applications (e.g. weather
forecasting).

Anima Anandkumar - 2nd
Sr. Director of Al Research at NVIDIA..,
. ®

‘Wih climate changing rapidly ard increasing numbers
of axtreme events happening, | have been askad how
Al can help. In sdditio ks ee more

Car Al [PNG) rrstien memecshim and better ridk anmament



Data Assimilation: Making sense of this...
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...to produce this
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Data Assimilation: Where has it been used ?

« Atmospheric composition



Data Assimilation: Where next ?



Data Assimilation: Where next ?

« Km Scale DA systems
« Using DA to improve models (weather and climate)

« The rise of the machines



Data Assimilation: Where next ?

« Km Scale DA systems



Exploring the limits of high-resolution...DestinE

Destination Earth Information Day
28 February 2022 =




High-resolution DA...but how high ?

Scales required to exploit observation to full potential Scales required to initialize our forecast models

MET-11 SEVIRI real Observations Simulated from TCO7999 model (~1.25Km)
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Data Assimilation: Where next ?

* Using DA to improve models (weather and climate)



Data Assimilation: Improving models

J(x)=(x—x5) B (x—x)+
(y—H[x])' R (y=H[x]) + (8-5)"Bs"(8—f)

+ (n—m) ' Q  (n—m)

Quarterly Journal of the Quarterly Journal of the

B RMetS
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Research Article
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P. Laloyaux $%4 M. Bonavita, M. Chrust, S. Gurol
First published: 13 July 2007 | https://doi.org/10.1002/qj.94 | Citations: 97
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.and can be used to constrain historical periods

Reanalysis during periods poorly constrained by observations (e.g. pre-satellite) inherit systematic model error,
causing shocks when major observing systems come and go which can compromise climate trends
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Data Assimilation: Improving models

Application of parameter estimation to improving the

standard deviation of model sub-grid orography
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Mean analysis increments
applied to SGO

Original (black) and
optimized (red) model
parameter values for
Norway (top) and Alps
(lower)

Surface pressure observations are very
sensitive to changes in the assumed
model sub-grid orography (SGO) which
IS part of the observation operator

Adding SGO as an augmentation of the
4D-Var control vector (XCV formulation)
allows the observations to improve this

parameter of the model

Use of the 4D-Var optimized SGO
parameter in medium-range forecasts
Improves skill




Data Assimilation: Where next ?

 Therise of the machines



Data Assimilation: The backbone of ML forecasts




Data Assimilation...will machines take over ?

Observations Forecasts




Summary

« Data Assimilation is an incredibly powerful technique to bring
together different sources of knowledge

* It has played a key role in advancing weather forecast accuracy,
understanding a changing climate (but also many other
applications | did not mention)

« Data Assimilation heading to ever higher resolution to support
models and extract the most from satellite observing systems

* Machine learning is accelerating but also challenging our
approach to NWP and Data Assimilation




But...How does the QJRMS adapt ?

ML is advancing at an astonishing rate

 Itis disruptive technology in the very best sense of the word

It has its own literature base (at least for the time being) but this literature looks very different
to a science publication

* ML does science ...without understanding the science!!

« Many commercial technology players are deeply involved in this area

« How does the established scientific literature adapt, and does it have a
role to play in the future ?

Quarterly Journal of the £ RMets

Royal Meteorological Society e




Chemical species providing wind information

Brightness temperature (K)
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| | |

Advection wind tracing from

dust aerosol ?
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Coupled radiance based SST analysis (RADSST)

NEMOVAR SST changes forced by IASI

Tuesday 18 August 2020 00 UTC ecmf 140 VT Tuesday 18 August 2020 00 UTC surface Sea surface lemperature
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Changes have memory in the ocean and feed
back to improve IASI use in the atmosphere
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Assimilating IASI in RADSST produces a
better fit to surface and sub-surface in
situ ocean observations which
simultaneously anchor the IASI
assimilation
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