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This suggests that the basic idea underlying the notion of a cutoff could in principle
be more precisely defined in terms of IPV distributions. As far as we can see, such a
definition would be entirely consistent with the traditional synoptic view of the essential
phenomenon, taking other evidence into account such as wind and temperature fields
(cf. Fig. 15) together with observational case studies of the time development of the
cutting-off process. For instance section 10.1 of Palmén and Newton (1969, p. 274)
describes the birth of a large cutoff cyclone from the cold “polar-source region”, with
which, at a certain stage of development, “it is still united by an ‘umbilical cord’ in the
form of a shear line”. From the information presented it appears that the stage of
development referred to is fundamentally similar to that shown in our Fig. 5 for 23
September 1982, even though the orientation, geographical location, and other details
are different.

Palmén and Newton describe the polar-source region as ‘tropospheric’ (loc. cit., and
top of p. 284). However, it has become increasingly clear, both from examples like that
of Fig. 5 and from the theoretical principles reviewed in this paper, that this concept
requires modification if one is interested in questions of dynamical cause and effect. For
dynamical purposes an important part of the polar-source region is Kleinschmidt’s lower-
stratospheric reservoir of high-PV air. At least in cases like that of Fig. 5, the observed
development appears to be largely controlled by long-range, quasi-isentropic advection
of high-PV air from the lower-stratospheric reservoir. The word ‘controlled’ is used
deliberately here, its use being justified by the invertibility principle. Whereas low
temperature advection, for instance, may well appear important from a purely diagnostic
point of view in, say, the middle troposphere ahead of the moving [PV anomaly, it can
be argued that in terms of cause and effect its importance is actually secondary, in such
cases, by comparison with that of IPV advection at higher altitudes. This is because much
of the coldness of the free atmosphere beneath the IPV anomaly is attributable to the
induced temperature field of the anomaly. As such, it cannot be advected anywhere unless

Figure 22. A standard fluid-dynamical experiment showing barotropic vortex rollup visualized by dye injection
(Pullin and Perry 1980). A piston, not shown, drives water from left to right with almost constant speed normal
to the axis of a wedge of 30° semi-vertex angle; the wedge acts as a source both of dye and of vorticity.
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the anomaly is itself moving in the direction concerned. The point made in section 4
about the compensating effects of vertical motion is relevant here. Temperature advection
near the ground is, of course, an entirely different matter, a fact which is related to the
constraining effect of the earth’s surface upon large-scale vertical motion and which has
already been illustrated in several ways in section 5.

The phenomenon of cutting off exemplified in Figs. 5 and 11 appears to have
counterparts in classical aerodynamics. Figure 22 shows what appears to be an aero-
dynamical (barotropic) counterpart to the 24 September panel in Fig. 5, as far as the
cutoff cyclone and its presumed ‘umbilical cord’ are concerned. The figure, taken from
a paper by Pullin and Perry (1980), represents a laboratory photograph using the dye
method of flow visualization: the dye roughly marks high vorticity values (although the
vorticity diffuses faster than the dye). The spatial resolution is, of course, far greater
than that of Fig. 5, and the ‘umbilical cord’ shows up clearly. This type of flow is known
to be accurately described by the barotropic vorticity equation, with a diffusive term
included.

Features common to the aerodynamical and meteorological cases are the existence
of a source of cyclonic (potential) vorticity fluid on the left, advection of cyclonic
(potential) vorticity fluid from left to right, and a tendency for the furthest part of the
(potential) vorticity distribution to wind itself up (a concept justifiable in terms of
the concept of ‘induced velocity field’) into a compact, nearly axisymmetric vortex.
Aerodynamicists use the term ‘vortex rollup’ to describe the phenomenon, and it has
been extensively studied: see. €.g., p. 590 of the textbook by Batchelor (1967), and for
more detail the review by Saffman and Baker (1979). The main difference between the
two cases lies in the nature of the source region, which in the laboratory case is the
boundary layer on a solid, wedge-shaped obstacle, seen at the left of the photograph,
but in the meteorological case is Kleinschmidt’s stratospheric reservoir of high-PV air.
Also, in the atmospheric case there may well be much less spiral fine-structure in the
IPV distribution than Fig. 22 might suggest, because of the different initial conditions.
(And even if such structure were initially present—as was suggested in section 2(d) for
another case—it would tend to be destroyed by small-scale quasi-barotropic shear
instabilities.)

9. CONCLUDING REMARKS

Perhaps the central point we have tried to bring out in this paper is the way in which
the IPV concept succinctly encapsulates all the balanced dynamics usually described in
terms of advection, divergence and vertical motion. IPV thinking gives direct insight, for
example, into the circumstances in which the effects of advection and vertical motion
tend to cancel each other: recall again the thought-experiment described in section 4.
Especially for quasi-conservative processes involving rapid advection of upper air syn-
optic-scale features (sections 2(c), 6(e)), IPV thinking has considerable potential for
furthering our understanding of the behaviour of real weather systems. Moreover, the
invertibility principle suggests that the IPV concept should remain useful even in the
presence of moist or dry diabatic heating or cooling (sections 6(e), 7), along with other
non-conservative effects such as friction and gravity-wave drag. As was pointed out in
section 4 the crucial advantage of IPV maps over, say, isobaric absolute vorticity maps,
is the conceptual separation they offer between the effects of advection on the one hand.
and the effects of vertical motion on the other.

The use of coarse-grain IPV maps together with surface maps should lead not only
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to a clearer recognition of partial analogies with extensively studied aerodynamical
phenomena (section 8), but also to a greatly sharpened ability to relate observed
phenomena to theoretical concepts generally. In order to make a meaningful comparison
between dynamical theory, modelling and observation, it is often necessary to know
something about IPV and surface 6 gradients. For instance, such information may be
necessary in order to tell whether or not a given instability mechanism could be operating,
or could be about to operate, in a given synoptic situation (section 6).

The use of IPV maps could prove valuable as an aid to the quality control of
numerical weather analysis and prediction, especially if appropriate image-processing
and animated-graphics techniques were brought to bear. IPV maps might also be valuable
in the development and assessment of numerical forecasting models, for example in
problems like the embedding of fine-mesh regional models within larger-scale models.
Fundamental to the success of such embedding is a sufficiently good representation,
whether implicit or explicit, of the inflow of IPV features across the boundaries. This
may be quite crucial, for instance, to predicting certain cases of explosive cyclogenesis
(section 6(e)).

Similarly, it can be argued that the effectiveness of parametrization schemes for the
physical processes governing diabatic and frictional changes in an atmospheric model
(where ‘frictional’ refers to any sub-grid-scale momentum transfer process) should be
judged, for dynamical purposes, largely by whether or not those schemes deliver the
correct diabatic and frictional rates of change of IPV distributions when their output is
substituted into the right-hand sides of Egs. (70a) ff. To the extent that the invertibility
principle holds, it tells us that the only dynamically relevant output of the ‘physics
package’ used in the model is the net effect on the IPV distributions and on the low-level
0 distribution, assuming of course that the package does not generate spurious gravity
modes. The letter ‘I’ is important here, as elsewhere: a consideration of the accuracy of
the rates of change of PV following an air parcel is not enough for this purpose, since
IPV distributions can be greatly affected, also, by diabatic motion across isentropic
surfaces when vertical PV gradients are strong, as has often been pointed out. This latter
effect is allowed for by Egs. (74a,b), whose right-hand sides remind us of the importance
of having estimates of moist-convective and other contributions to diabatic heating with
the correct vertical as well as horizontal distribution.

Another major area in which IPV maps could prove useful is that of research into
tropical, extra-tropical interactions, in which a fundamental problem is to quantify the
long-range interconnections between dynamical regimes having very different scaling
characteristics. There are many aspects to be considered, of which the presence of
subtropical upper air cutoff cyclones, such as that illustrated in Fig. 10, is merely one
indication.

The 350K IPV map shown in Fig. 2(a) and those for subsequent days (not shown)
give numerous indications of low-PV air being injected into middle and high latitudes
and high-PV air moving into subtropical and tropical latitudes. This is exactly what
happens in the stratospheric ‘breaking Rossby waves’ referred to in section 6(d). As was
also noted there, very similar phenomena occur in model simulations of nonlinear
baroclinic-wave life cycles. The similarity of the trailing troughs or shear lines seen in
Fig. 20(b) to that in the bottom left-hand quadrant of Fig. 2(a) is striking, as is the
similarity of both patterns to those seen in the winter stratosphere; see also, e.g., Fig. 2
of Elliott (1956), Figs. 2, 5c of Holopainen and Rontu (1981), and Fig. 10.4a of Palmén
and Newton (1969). One point of interest is that the characteristic spatio-temporal
structure of the phenomenon, when viewed as a dynamical whole, makes it a likely
candidate for helping to explain the interesting lagged correlation patterns between
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tropical cloudiness (cf. section 4) and mid-latitude 500 mb height field variability, recently
discovered by Liebmann and Hartmann (1984).

The presence of features like D” in Fig. 2(a) suggests that some of the high-PV air
in the trailing trough may wind itself up into compact vortices in the manner suggested
by the aerodynamical analogy discussed in section 8. It seems very likely that this is how
subtropical cutoff cyclones of the kind illustrated in Fig. 10 are formed. The same thing
appears to take place on a larger scale in the middle stratosphere (Clough et al. 1985:
Mclntyre and Palmer 1984), as well as in some of the other cases mentioned. The idea
seems generally consistent with synoptic as well as aerodynamical experience and it would
be of interest to repeat the numerical experiment of Fig. 20 at higher resolution. and to
carry out other, related simulations, to see whether such behaviour is reproduced there
as well.

Upper air trailing troughs and associated phenomena are unlikely to be the only
significant features in tropical IPV distributions. For instance important IPV anomalies
may be expected to be generated by large-scale diabatic heating. These will be subject
to the integral constraint (70b).

The induced fields of any large-scale IPV anomaly, whatever its origin, may extend
into, and thus affect, middle latitudes. As a result, the tropics may appear variously as
a source, an absorber, or a reflector of mid-latitude planetary-scale disturbances. Thus,
for example, the Rossby wave breaking phenomenon exemplified in Figs. 2(a) and 20(b)
may represent a two-way interaction between middle latitudes and the tropics, not only
injecting disturbances into the tropics, but also changing from day to day the extent to
which the tropics appears to middle latitudes as an absorber or reflector of mid-latitude
planetary-wave activity. The absorbing or reflecting characteristics of the tropics depend
on the phase relations between mid-latitude and tropical IPV patterns in essentially the
same manner as indicated by the discussion in section 6(c) and Fig. 19. This particular
two-way interaction has been studied quantitatively, in idealized form, in the theory of
‘nonlinear critical layers’ referred to in section 6(d). Tests of the relevance of such
theoretical ideas, and of many other ideas about the dynamics of tropical, extra-tropical
interactions, will ultimately rest on knowing enough, implicitly or explicitly, about real
IPV distributions.

Within the tropics one has the alternative possibility of using upper air vorticity
diagnoses (e.g. Sardeshmukh and Hoskins 1985, and refs.), which will be locally equiv-
alent to IPV diagnoses if the disturbances are sufficiently deep (in comparison with the
appropriate Rossby height, Eq. (33b)), and if static stability values are sufficiently near
constant. It is in describing dynamical interactions between regimes on either side of the
subtropical jet, with its very Steep static stability change, that IPV diagnostics seem likely
to have a clear advantage.

The presence of negative PV regions in Fig. 2(a), if they are real. is suggestive of
dynamically significant cross-equatorial advective processes. It should be noted in this
connection that if an IPV anomaly in the form of an isolated vortex having a near-circular
planform were to cross the equator into the opposite hemisphere, then the vortex would
still be a stable entity except perhaps to a small extent on its periphery, depending on
the ambient values of the potential vorticity P and hence of the product f,,.P in the
inequality (30). It is not true, as is sometimes assumed, that the whole vortex would
become inertially unstable since. as (21) and (30) remind us, it is the sign of f,. and not
that of f which is dynamically relevant in relation to the sign of the PV itself.

Many other applications of the I[PV concept suggest themselves. Indeed the invert-
ibility principle implies that there are potentially as many significant applications of IPV
thinking as there are balanced dynamical processes of meteorological interest, whether
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linear or nonlinear, large or small scale. For instance the partial analogy with two-
dimensional, barotropic aerodynamics immediately explains why we should expect to see
Karmén vortex streets in the lee of mountainous islands, in the presence of stable
stratification (e.g. Bugaev 1973; Thompson et al. 1977, and refs.), and also suggests ways
of making the vortex-street concept quantitative, should this be desired, even though
neither quasi-geostrophic theory nor any of its refinements. nor classical aerodynamics
itself, is applicable. However, the most exciting prospects at present seem to lie in the
study of synoptic and larger scales, where a significant amount of information is already
available from operational analyses and forecasts, as has been illustrated here. In the
present state of the art not all the features appearing in operationally-based IPV maps
can be considered meaningful, of course, but it seems reasonable to hope for progressive
improvement, especially if isentropic analysis methods are developed to their full poten-
tial. One incentive to progress is the fact that the quality of the best available operational
IPV maps can be regarded as a sensitive measure of the quality of the analysis—forecast
process itself.

In the past, practical application of the IPV concept to atmospheric data has always
been rendered problematical by deficiencies in the data and by the volume of computation
required. But now, in virtue of the quality already being attained in operational data
analyses, and the availability of adequate computing power, coarse-grain IPV maps are
beginning to look more and more like an extremely useful addition to the armoury of
those interested in understanding and forecasting the behaviour of the atmosphere.
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APPENDIX
The computation of vertical motion
Various forms of the adiabatic, frictionless omega equation are available in the
literature. We first derive a new form of the equation which is consistent with the IPV
approach, beginning with the frictionless, adiabatic case.
As implied by (42), (43) and (44), the quasi-geostrophic potential vorticity ¢ may
be written as
2 [ 2 6 f=2 t
g=f+Viyp +f,_3$(.-\ “ay'/ap). (A.1)

Taking f30°/apat of this equation and using the hydrostatic equation (41) and the
definition of N? (45) yields

a‘q 800 8t i, 30(ar )
7= RV, — - fi —= | ————), A2
f apot "ot fo ap? (—dﬁrﬁ-;'dp..) it




with two-
Dect to see
of stable
2CSts ways
n though
dynamics
lie in the
s already
e. In the
PV maps
Dgressive

Il poten-

2rational

forecast

S always
dutation
1al data
laps are
oury of
ere.

' in the
D. M.
Ichrist,
es, M.
"Neill,
erl, T.
allace,
g Fig.
0 Eq.
Or the

1 the
PV

;l'l‘lﬁy

A.l)

the

ISENTROPIC POTENTIAL VORTICITY MAPS 939

where R = R(p) is defined in (20). Following Andrews and Mclntyre (1976) we define a
‘residual’ vertical velocity

—~

D=w+ (v- V,0)/(d6./dp) =~ w + Voo (v0')/(d8,i/dp). (A.3)
From the adiabatic thermodynamic €quation, (A.3) may be rewritten
W= — (éﬁi‘)'/r_'it){(d@mr/‘dp). (A.4)

Using (A.4) to substitute for d6'/at in (A.2) gives

d a
P q

e ki) A5
Jr';‘p at (@) ( )

where the linear operator &' is defined as
L'(w) = N2Vig + f50%w/ap?. (A.6)

The conservation of q moving with the

geostrophic velocity enables the left-hand side of
(A.5) to be written in terms of the ad

vection of ¢ and so the equation becomes
L(®)=foa(v-V,q)/ap, (A7)

which is of the form (49). After some manipulation it can be verified that substitution of
(A.3) into (A.7) yields the usual omega equation.

(A.3) and (A.7) imply that the total vertical velocity may be written as the sum of
three contributions:

W = Wpys + Wgry + Wy (A.8)

where wpy, (potential vorticity advection) is the solution of

£L'(w) = fra(v. V,@)/op with w=0 on p=0,py; (A.9)

(WpTA (boundary temperature advection) is the solution of
L'(w)=0 with o =(v- V,0)/(d6,¢/dp) on p= 0,p: (A.10)

wyy (isentropic upgliding) is the vertical velocity given by
®==(v:V,0)/(db,/dp) (A.11)

cf. (A.3). Here the sum of wpy, and @
boundary condition implied by (A.3).

If the boundary temperature distribution is inco
tribution according to (47), the

BTA IS equal to @. satisfying (A.7) with the

» Wpta and @y, and that this
, in a frame moving with a steady
» Wpva and wgr, are zero and wy
general form derived here may be
isentropic relative flow analyses of

For comparison we now note two other forms of the adj
equation. In either case the boundary conditions ¢ = 0 at
traditional form of the omega equation may be written

abatic, frictionless omega
P =0, p, may be applied. The

L () =f, a_dﬁ{" Volf k- (V, x W]} + RV (v - v ) (A.12)
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The two terms on the right-hand side are the vorticity advection and thermal advection
terms, respectively. Following Hoskins ef al. (1978) and Hoskins (1982), another form
of the equation may be written

£'(w) =2V, - Q + Bfy dv/ap, (A.13)
where the quasi-horizontal vector
Q= —|RV,0'|k X dv/ds (A.14)

and s is a quasi-eastward horizontal coordinate in the direction of the 8’ contour. It
may be verified, again after some manipulation, that (A.12) and (A.13) are both
mathematically equivalent to (A.8)-(A.11).

As discussed in Hoskins et al. (1978), the main reservation about the traditional
vorticity-advection, thermal-advection form, (A.12), is the cancellation between the two
forcing terms, the extent of which cancellation is frame dependent. The Q vector form
(A.13), after some practice at determining the forcing using (A.14), allows some insight
into the vertical velocity field given by quasi-geostrophic theory. The new form (A.8)-
(A.11) is attractive in providing corrections to the simple isentropic upgliding associated
with IPV and boundary 6 advection relative to the system of interest and for linking the
discussion with that of section 4. The sum (A.8) may on the other hand be too complicated
for the simple diagnosis of other real situations.

In the presence of a frictional force-curl K, an Ekman boundary layer of height-
scale &, a diabatic potential temperature source 8, and topography of height 4, @ has
four additional contributions

oppic © L'(0) = —fo9(k.K)/dp with @ = 0 on p = p,, 0; (A.15)

wexkm : £'(w) =0 withw = —3pgdfonp =pyand w=0onp = 0; (A.16)

Wpas : $'(w)=—RV;0withw=00np=p,,0; (A.17)

Wrorog: <L'(w)=0with w = —p,gv.V,honp=p,and w=0o0np = 0. (A.18)
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