Stratosphere-tropospheric coupling:
we are asking the wrong questions.

Mark P. Baldwin
(From Baldwin and Dunkerton, *Science* 2001)
(From Baldwin and Dunkerton, *Science* 2001)
Observed Average Surface Pressure Anomalies (hPa)

60 days following weak stratospheric winds

60 days following strong stratospheric winds

From Baldwin et al., Science 2001
Northern Annular Mode
Composite surface maps for high and low NAM index.
(From Thompson and Wallace, *Science* 2001)
• No one has yet explained the dynamics of how the troposphere is affected.
• No one has yet explained the dynamics of how the troposphere is affected.

• I think that any “theory” of stratosphere–troposphere coupling must account for the main observations:
• No one has yet explained the dynamics of how the troposphere is affected.

• I think that any “theory” of stratosphere–troposphere coupling must account for the main observations:

 1) the surface pressure pattern associated with variations in the strength of the polar vortex looks like the NAM/NAO.
• No one has yet explained the dynamics of how the troposphere is affected.

• I think that any “theory” of stratosphere–troposphere coupling must account for the main observations:

1) the surface pressure pattern associated with variations in the strength of the polar vortex looks like the NAM/NAO.

2) the maximum surface response is near the North Pole.
• No one has yet explained the dynamics of how the troposphere is affected.

• I think that any “theory” of stratosphere–troposphere coupling must account for the main observations:

1) the surface pressure pattern associated with variations in the strength of the polar vortex looks like the NAM/NAO.

2) the maximum surface response is near the North Pole.

3) the relationship between stratospheric vortex strength and the NAM is linear.
Baldwin and Dunkerton (1999) suggested that the redistribution of mass in the stratosphere, in response to changes in wave driving, may be sufficient to influence the surface pressure significantly, consistent with the theoretical results of Haynes and Shepherd (1989).
• Baldwin and Dunkerton (1999) suggested that the redistribution of mass in the stratosphere, in response to changes in wave driving, may be sufficient to influence the surface pressure significantly, consistent with the theoretical results of Haynes and Shepherd (1989).

• Ambaum and Hoskins (2002) used “PV thinking” to explain how stratospheric PV anomalies affect surface pressure.
Anomalous wave drag leads to variations in vortex strength

January Zonal-Mean Wind

“Wave Driven Pump”

Wave Drag
FIG. 4. Schematic of the bending of isentropic surfaces (labeled θ_0, θ_1, and θ_2) toward a positive potential vorticity anomaly. The arrows represent winds associated with the potential vorticity anomaly, becoming weaker away from the anomaly.

Diagram from Ambaum and Hoskins *J Climate* (2002).
Create an index of vortex strength as defined by PV at 600K (20-25 hPa).
From Baldwin and Birner, *Nature Geosci.*, under revision
Composite of 24 negative events: PV at Equivalent Lat 70N

From Baldwin and Birner, Nature Geosci., under revision
Composite of 24 negative events: PV at Equivalent Lat 70N

From Baldwin and Birner, Nature Geosci., under revision
FIG. 4. Schematic of the bending of isentropic surfaces (labeled θ_0, θ_1, and θ_2) toward a positive potential vorticity anomaly. The arrows represent winds associated with the potential vorticity anomaly, becoming weaker away from the anomaly.

Diagram from Ambaum and Hoskins *J Climate* (2002).
Composite Anomalous Pressure, 33 Weak Vortex events

PV index at 600K

Pressure Anomaly, 7 hPa between ticks

Lag (days)
Correlation during winter (JFM) between the 600K PV index and zonal-mean temperature. The JFM daily correlation between PV530 and polar cap tropopause T anomalies is 0.90.

From Baldwin and Birner, Nature Geosci., under revision
A simple “model”

[Diagram: Two cylinders, one with labeled "Mass" and "Higher pressure and temperature".]
A simple “model”
50-hPa Annular Mode
Northern Annular Mode
Plunger

Polar Cap Pressure Anomaly

km

Pressure (hPa)
A guess at tropospheric pressure change

Polar Cap Pressure Anomaly

- wave driven pump
- modest tropospheric effect?
Actual Data

Regression between PV600K index and Polar Cap p'

ERA-40 observations
Actual Data

Regression between PV600K index and Polar Cap p'

Polar Cap Pressure Anomaly

ERA-40 observations

Tropospheric amplification
Actual Data

Regression between PV600K index and Polar Cap p'

Polar Cap Pressure Anomaly

ERA-40 observations

Tropospheric amplification

This diagnostic can be made for any model or data set.
Conclusions
Conclusions

- My hypothesis is that mass movement (or alternately the effects of PV anomalies) is the primary driver of tropospheric effects.
Conclusions

- My hypothesis is that mass movement (or alternately the effects of PV anomalies) is the primary driver of tropospheric effects.
Conclusions

• My hypothesis is that mass movement (or alternately the effects of PV anomalies) is the primary driver of tropospheric effects.

• Mass movement explains 1) why the surface pattern looks like the NAM, and why the surface effects are proportional to anomalies in the strength of the polar vortex.
Conclusions

• My hypothesis is that mass movement (or alternately the effects of PV anomalies) is the primary driver of tropospheric effects.

• Mass movement explains 1) why the surface pattern looks like the NAM, and why the surface effects are proportional to anomalies in the strength of the polar vortex.
Conclusions

• My hypothesis is that mass movement (or alternately the effects of PV anomalies) is the primary driver of tropospheric effects.

• Mass movement explains 1) why the surface pattern looks like the NAM, and why the surface effects are proportional to anomalies in the strength of the polar vortex.

• Tropospheric processes amplify the pressure anomalies in the troposphere. The reason is not yet understood.
Conclusions

• My hypothesis is that mass movement (or alternately the effects of PV anomalies) is the primary driver of tropospheric effects.

• Mass movement explains 1) why the surface pattern looks like the NAM, and why the surface effects are proportional to anomalies in the strength of the polar vortex.

• Tropospheric processes amplify the pressure anomalies in the troposphere. The reason is not yet understood.
Conclusions

• My hypothesis is that mass movement (or alternately the effects of PV anomalies) is the primary driver of tropospheric effects.

• Mass movement explains 1) why the surface pattern looks like the NAM, and why the surface effects are proportional to anomalies in the strength of the polar vortex.

• Tropospheric processes amplify the pressure anomalies in the troposphere. The reason is not yet understood.

• The simple ΔP vs. Z diagnostic can be used to assess the realism of S–T coupling in any model.
Conclusions

• My hypothesis is that mass movement (or alternately the effects of PV anomalies) is the primary driver of tropospheric effects.

• Mass movement explains 1) why the surface pattern looks like the NAM, and why the surface effects are proportional to anomalies in the strength of the polar vortex.

• Tropospheric processes amplify the pressure anomalies in the troposphere. The reason is not yet understood.

• The simple ΔP vs. Z diagnostic can be used to assess the realism of S–T coupling in any model.
Conclusions

• My hypothesis is that mass movement (or alternately the effects of PV anomalies) is the primary driver of tropospheric effects.

• Mass movement explains 1) why the surface pattern looks like the NAM, and why the surface effects are proportional to anomalies in the strength of the polar vortex.

• Tropospheric processes amplify the pressure anomalies in the troposphere. The reason is not yet understood.

• The simple ΔP vs. Z diagnostic can be used to assess the realism of S–T coupling in any model.